RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Agricultural Process and Food Engineering ; Effect of Microwave Heat Treatment on Inhibition of Corn Seed Germination

        ( Ashabahebwa Ambrose ),( Wanghee Lee ),( Byoungkwan Cho ) 한국농업기계학회 2015 바이오시스템공학 Vol.40 No.3

        Purpose: Corn is a major commercial crop targeted for genetic modification owing to its high consumer demand as a foodstuff for humans and livestock, as well as its other industrial applications. However, the safety of genetically modified (GM) crops is controversial. Indeed, several countries have banned the importation of GM seeds that can germinate. Therefore, development of effective, convenient, and nondestructive methods to inhibit seed germination is required. Methods: This study aimed to examine the efficacy of microwave heat treatment for inhibition of germination of corn kernels and for optimization of power and exposure time required for effective aging treatment. Artificial inhibition was induced in corn kernels using microwave heat treatment. Seven power levels were examined (400, 500, 600, 700, 800, 900, and 1000 W) at each of the four exposure times (0.5, 1.0, 1.5, and 2.0 min). Results: Corn kernels could be aged effectively after heating for 0.5~1.0 min at powers greater than 800 W, with increasing efficacy observed at higher powers. Further analysis showed that the most effective inhibition of germination was observed at 1000 W for 40 s. This setting did not cause any physical damage to the corn kernels. Conclusions: Optimal inhibition of corn kernel germination was achieved using higher power for shorter times, which may be useful for industrial corn seed treatment.

      • KCI등재

        Review : A Review of Technologies for Detection and Measurement of Adulterants in Cereals and Cereal Products

        ( Ashabahebwa Ambrose ),( Byoung Kwan Cho ) 한국농업기계학회 2014 바이오시스템공학 Vol.39 No.4

        Purpose: The continued increase in the world population has triggered an increased demand for food. Cereal grains, flour, and their products constitute the staple diet for most of the world`s population. This high demand for food, particularly for cereal-based products, has been exploited for commercial gain through adulteration of food materials. We provide a thorough review of the current developments and limitations of modern, nondestructive analytical techniques used for detection of adulterants in cereals and their products and compare them with conventional methods. Results: Adulterated food poses a serious health risks to humans, animals, and the ecosystem in general. Over the last few decades, the adulteration industry has developed fraudulent practices that often outsmart conventional methods of detection and quality control. Therefore, technological advancements to aid in detection and measurement of adulterants in food products and to ensure food quality and safety are critically important to consumers worldwide. Conclusion: There is a continuous demand for development of nondestructive technology to improve the accuracy and efficiency of detection, measurement, and qualification of adulterants in cereals and other food materials.

      • KCI등재

        A Review of Technologies for Detection and Measurement of Adulterants in Cereals and Cereal Products

        Ambrose, Ashabahebwa,Cho, Byoung-Kwan Korean Society for Agricultural Machinery 2014 바이오시스템공학 Vol.39 No.4

        Purpose: The continued increase in the world population has triggered an increased demand for food. Cereal grains, flour, and their products constitute the staple diet for most of the world's population. This high demand for food, particularly for cereal-based products, has been exploited for commercial gain through adulteration of food materials. We provide a thorough review of the current developments and limitations of modern, nondestructive analytical techniques used for detection of adulterants in cereals and their products and compare them with conventional methods. Results: Adulterated food poses a serious health risks to humans, animals, and the ecosystem in general. Over the last few decades, the adulteration industry has developed fraudulent practices that often outsmart conventional methods of detection and quality control. Therefore, technological advancements to aid in detection and measurement of adulterants in food products and to ensure food quality and safety are critically important to consumers worldwide. Conclusion: There is a continuous demand for development of nondestructive technology to improve the accuracy and efficiency of detection, measurement, and qualification of adulterants in cereals and other food materials.

      • KCI등재

        Effect of Microwave Heat Treatment on Inhibition of Corn Seed Germination

        Ambrose, Ashabahebwa,Lee, Wang-Hee,Cho, Byoung-Kwan Korean Society for Agricultural Machinery 2015 바이오시스템공학 Vol.40 No.3

        Purpose: Corn is a major commercial crop targeted for genetic modification owing to its high consumer demand as a foodstuff for humans and livestock, as well as its other industrial applications. However, the safety of genetically modified (GM) crops is controversial. Indeed, several countries have banned the importation of GM seeds that can germinate. Therefore, development of effective, convenient, and nondestructive methods to inhibit seed germination is required. Methods: This study aimed to examine the efficacy of microwave heat treatment for inhibition of germination of corn kernels and for optimization of power and exposure time required for effective aging treatment. Artificial inhibition was induced in corn kernels using microwave heat treatment. Seven power levels were examined (400, 500, 600, 700, 800, 900, and 1000 W) at each of the four exposure times (0.5, 1.0, 1.5, and 2.0 min). Results: Corn kernels could be aged effectively after heating for 0.5~1.0 min at powers greater than 800 W, with increasing efficacy observed at higher powers. Further analysis showed that the most effective inhibition of germination was observed at 1000 W for 40 s. This setting did not cause any physical damage to the corn kernels. Conclusions: Optimal inhibition of corn kernel germination was achieved using higher power for shorter times, which may be useful for industrial corn seed treatment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼