RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        MEMS Based Pedestrian Navigation System

        Cho, Seong Yun,Park, Chan Gook Royal Institute of Navigation 2006 The Journal of navigation Vol.59 No.1

        <P>In this paper we present a micro-electrical mechanical system (MEMS) based pedestrian navigation system (PNS) for seamless positioning. The sub-algorithms for the PNS are developed and the positioning performance is enhanced using the modified receding horizon Kalman finite impulse response filter (MRHKF). The PNS consists of a biaxial accelerometer and a biaxial magnetic compass mounted on a shoe. The PNS detects a step using a novel technique during the stance phase and simultaneously calculates walking information. Step length is estimated using a neural network whose inputs are the walking information. The azimuth is calculated using the magnetic compass, the walking information and the tilt compensation algorithm. Using the proposed sub-algorithms, seamless positioning can be accomplished. However, the magnetic compass based azimuth may have an error that varies according to the surrounding magnetic field. In this paper, the varying error is compensated using the MRHKF filter. Finally, the performance enhanced seamless positioning is achieved, and the performance is verified by experiment.</P>

      • SCIESCOPUS

        Comparative Analysis of Height-Related Multiple Correction Interpolation Methods with Constraints for Network RTK in Mountainous Areas

        Song, Junesol,Park, Byungwoon,Kee, Changdon Royal Institute of Navigation 2016 The Journal of navigation Vol.69 No.5

        <P>In Network RTK (Real-Time Kinematic) positioning, the multiple corrections from the reference stations, which constitute a network, are interpolated for the user location through appropriate interpolation models. There exist various methods to model spatial decorrelation errors from the tropospheric and ionospheric delay, which are the main contributors of the multiple corrections. Since tropospheric delay is largely affected by height differences, the heights of the multiple reference stations should be considered when selecting the appropriate interpolation methods. This work provides a comparative analysis of the different levels of performance of each height-related multiple correction interpolation method. In addition, this study proposes to add constraints to the conventional height-related interpolation methods that are derived from the characteristics of the tropospheric zenith delay variation over height. The actual Global Positioning System (GPS) observations are collected from selected reference station networks located in the USA for performance evaluation. As a result, the proposed solution yields improved vertical positioning accuracy by approximately 10% compared to the conventional interpolation methods for the selected networks.</P>

      • SCIESCOPUS

        An Improved Method of Land Masking for Synthetic Aperture Radar-based Ship Detection

        Yang, Chan-Su,Park, Ju-Han,Rashid, Ahmed Harun-Al Royal Institute of Navigation 2018 The Journal of navigation Vol.71 No.4

        <P>Land masking of Synthetic Aperture Radar (SAR) images is generally accomplished by applying either archived shoreline databases or image segmentation. However, those methods cannot be solely applied to geographical areas complicated with many small islands and exposed rocks. Therefore, we have proposed a new procedure where Sobel edge extraction is applied to detect the edges of all objects from KOMPSAT-5 X-band SAR images, followed by a merging process with the edges from the land objects based on Electronic Navigational Chart (ENC) coastlines. Using the land mask data, geometrically corrected SAR images were masked before applying a ship detection algorithm. This land masking procedure was applied to several images covering different areas of the Korean Peninsula. The results show that land targets such as newly constructed and natural objects were also masked, and thus did not create false alarms during ship detection. Therefore, this method can be used to assist precise ship detection using SAR images in coastal waters.</P>

      • SCIESCOPUS

        Long-Term GNSS Analysis for Local Geodetic Datum After 2011 Tohoku Earthquake

        Kim, Su-Kyung,Bae, Tae-Suk Royal Institute of Navigation 2018 The Journal of navigation Vol.71 No.1

        <P>The current Korean national geodetic reference frame, KGD2002, refers to the fixed epoch at 2002·0 under the assumption that there is no crustal movement of the Korean peninsula. A discontinuity in the coordinates of the reference stations may occur due to the relocation of the stations, antenna replacement, or earthquakes. The static reference frame has difficulty in covering continuous and/or discontinuous crustal movements at the same time. A new dynamic local geodetic reference frame has been calculated based on eight years (2007-2014) of Global Navigation Satellite System (GNSS) data. The final geodetic coordinates and velocities were calculated on the basis of the IGb08 reference frame. The discontinuity caused by the 2011 Tohoku earthquake can be addressed using the newly proposed model in this study, which ensures the consistency and continuity of the local geodetic datum.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼