RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice

        Kim, T.H.,Hur, Y.J.,Han, S.I.,Cho, J.H.,Kim, K.M.,Lee, J.H.,Song, Y.C.,Kwon, Y.U.,Shin, D. Elsevier Scientific Publishers Ireland Ltd 2017 Plant science Vol.256 No.-

        <P>Drought is an important limiting factor for rice production, but the genetic mechanisms of drought tolerance is poorly understood. Here, we screened 218 rice varieties to identify 32 drought-tolerant varieties. The variety Samgang exhibited strong drought tolerance and stable yield in rain-fed conditions and was selected for further study. To identify QTLs for drought tolerance, we examined visual drought tolerance (VDT) and relative water content (RWC) phenotypes in a doubled haploid (DH) population of 101 individuals derived from a cross between Samgang and Nagdong (a drought-sensitive variety). Three QTLs from Samgang were identified for VDT and explained 41.8% of the phenotypic variance. In particular, qVDT11 contributed 20.3% of the phenotypic variance for RWC. To determine QTL effects on drought tolerance in rain-fed paddy conditions, seven DH lines were selected according to the number of QTLs they contained. Of the drought-tolerance-associated QTLs, qVDT2 and qVDT6 did not affect tiller formation, but qVDT11 increased tiller number. Tiller formation was most stable when qVDT2 and qVDT11 were combined. DH lines with both of these drought-tolerance-associated QTLs exhibited the most stable tiller formation. Together, these results suggest that qVDT11 is important for drought tolerance and stable tiller formation in rain-fed paddy fields. (C) 2016 Elsevier Ireland Ltd. All rights reserved.</P>

      • Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm

        Yang, J.,Kim, S.R.,Lee, S.K.,Choi, H.,Jeon, J.S.,An, G. Elsevier Scientific Publishers Ireland Ltd 2015 Plant science Vol.240 No.-

        <P>Alteration of storage substances, in particular the major storage form starch, leads to floury endosperm. Because floury mutants have physical attributes for milling processes, identification and characterization of those mutants are valuable. In this study we identified a floury endosperm mutant caused by a TDNA insertion in Oryza sativa alanine-aminotransferase1 (OsAlaAT1). OsAlaAT1 is localized in the cytosol and has aminotransferase enzyme activity. The osalaat1 mutant has less amylose and its amylopectin is structurally altered. OsAlaAT1 is predominantly expressed in developing seeds during active starch synthesis. AlaAT catalyzes the interconversion of pyruvate to alanine, and this pathway is activated under low-oxygen conditions. Consistently, OsAlaAT1 is induced by such conditions. Expression of the starch synthesis genes AGPases, OsSSI, OsSSIIa, and OsPPDKB is decreased in the mutant. Thus, our observations suggest that OsAlaAT1 plays an essential role in starch synthesis in developing seeds that are exposed to low concentrations of oxygen. (C) 2015 Elsevier Ireland Ltd. All rights reserved.</P>

      • Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors

        Ai, T.N.,Naing, A.H.,Arun, M.,Lim, S.H.,Kim, C.K. Elsevier Scientific Publishers Ireland Ltd 2016 Plant science Vol.252 No.-

        <P>The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T-2) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru + mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru + mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. (C) 2016 Elsevier Ireland Ltd. All rights reserved.</P>

      • Reverse function of ROS-induced CBL10 during salt and drought stress responses

        Kang, H.K.,Nam, K.H. Elsevier Scientific Publishers Ireland Ltd 2016 Plant science Vol.243 No.-

        <P>Cellular levels of Ca2+ and reactive oxygen species (ROS) are maintained at low levels in the cytosol but fluctuate greatly when acting as second messengers to decode environmental and developmental signals. Phytohormones are primary signals leading to various changes in ROS or Ca2+ signaling during synergistic and antagonistic cross-talk. In this study, we found that brassinosteroids (BRs), hormones involved in diverse plant developmental processes, promote ROS production. To identify downstream signaling components of ROS during BR-mediated plant development, we searched for genes whose expression remained unchanged by ROS only in BR-signaling mutants and found calcineurin B-like (CBL) 10, which encodes a CBL should be changed to CBL10. protein that senses calcium. ROS-induced CBL10 expression was nullified and endogenous CBL10 expression in the shoot was low in the BR-signaling mutant. Using a cbl10 mutant and a transgenic plant overexpressing CBL10, we showed that BR sensitivity during hypocotyl growth decreased in the 6110 mutant under salt stress, providing an additional mechanism for positive regulation of salt stress by CBL10. We also demonstrated that CBL10 negatively affects tolerance to drought and is not mediated by abscisic acid-induced signaling. Our results suggest that Ca2+ signaling through CBL10 differently affects the response to abiotic stresses, partly by regulating BR sensitivity of plant tissues. (C) 2015 Elsevier Ireland Ltd. All rights reserved.</P>

      • The C<sub>3</sub>H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis

        Kim, D.W.,Jeon, S.J.,Hwang, S.M.,Hong, J.C.,Bahk, J.D. Elsevier Scientific Publishers Ireland Ltd 2016 Plant science Vol.250 No.-

        <P>Eukaryotic C3H-type zinc finger proteins (Znfs) comprise a large family of regulatory proteins involved in many aspects of plant stress response, growth and development. However, compared to mammalian, only a few plant Znfs have been functionally characterized. Here, T-DNA inserted gdsl (growth, development and splicing 1) mutant, displayed abnormal growth throughout the lifecycle owing to the reduction of cell size and number. Inverse PCR analysis revealed that the abnormal growth was caused by the disruption of At3g47120, which encodes a C3H42 protein belonging to the C-X-7-C-X-5-C-X-3-H class of the Znf family. GDS1 was ubiquitously transcribed, but shows high levels of expression in young seedling and unexpanded new leaves. In gdsl, the transcripts of many growth- and development-related genes were down-regulated, and the auxin response was dramatically reduced. A fluorescence-based assay revealed that the GDS1 protein was localized to the nucleus, prominently in the speckle compartments. Its arginine/serine dipeptide-rich-like (RS-like) domain was essential for nuclear localization. In addition, the SRI, SRm102 and U1-70K components of the U1 spliceosome interacted with GDS1 in the nuclear speckle compartments. Taken together, these suggest that GDS1, a nuclear-speckle-associated Znf, might play a significant role in splicing during plant growth and development. (C) 2016 Elsevier Ireland Ltd. All rights reserved.</P>

      • GL2-type homeobox gene Roc4 in rice promotes flowering time preferentially under long days by repressing Ghd7

        Wei, J.,Choi, H.,Jin, P.,Wu, Y.,Yoon, J.,Lee, Y.S.,Quan, T.,An, G. Elsevier Scientific Publishers Ireland Ltd 2016 Plant science Vol.252 No.-

        <P>Under long day (LD) lengths, flowering can be delayed in rice by modulating several regulatory genes. We found activation tagging lines that showed an early flowering phenotype preferentially under LD conditions. Expression of Rice outermost cell-specific gene 4 (Roc4), encoding a homeodomain Leu-zipper class IV family protein, was significantly increased. Transcript levels of Grain number, plant height, and heading date7 (Ghd7) were significantly reduced while those of Ghd7 downstream genes were increased. However, other flowering regulators were unaffected. Whereas constitutive overexpression of Roc4 in 'Dongjin' japonica rice, which carries active Ghd7, also caused LD-preferential early flowering, its over expression in 'Longjing27' rice, which is defective in functional Ghd7, did not produce the same result. This confirmed that Roc4 regulates flowering time mainly through Ghd7. Phytochromes and O. sativa GIGANTEA (OsGI) function upstream of Roc4. Transgenic plants showed ubiquitous expression of the beta-glucuronidase reporter gene under the Roc4 promoter. Furthermore, Roc4 had transcriptional activation activity in the N-terminal region of the StAR-related lipid-transfer domain. All of these findings are evidence that Roc4 is an LD-preferential flowering enhancer that functions downstream of phytochromes and OsGI, but upstream of Ghd7. (C) 2016 Elsevier Ireland Ltd. All rights reserved.</P>

      • Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana

        Huang, P.,Ju, H.W.,Min, J.H.,Zhang, X.,Kim, S.H.,Yang, K.Y.,Kim, C.S. Elsevier Scientific Publishers Ireland Ltd 2013 Plant science Vol.203 No.-

        Plant receptor-like protein kinases are thought to be involved in various cellular processes mediated by signal transduction pathways. There are about 45 lectin receptor kinases in Arabidopsis, but only a few have been studied. Here, we investigated the effect of the disruption and overexpression of a plasma membrane-localized L-type lectin-like protein kinase 1, AtLPK1 (At4g02410), on plant responses to abiotic and biotic stress. Expression of AtLPK1 was strongly induced by abscisic acid, methyl jasmonate, salicylic acid and stress treatments. Overexpression of AtLPK1 in Arabidopsis resulted in enhanced seed germination and cotyledon greening under high salinity condition, while antisense transgenic lines were more sensitive to salt stress. Activity of three abiotic stress responsive genes, RD29A, RD29B and COR15A, was elevated in AtLPK1-overexpressing plants than that in wild type (WT) plants with salt treatment, whereas the transcript level of these genes in antisense plants decreased compared with WT. Furthermore, AtLPK1-overexpressing plants displayed increased resistance to infection by Botrytis cinerea and exhibited stronger expression of a group of defense-related genes than did WT. The data implicates AtLPK1 plays essential roles at both abiotic and biotic stress response in Arabidopsis thaliana.

      • Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes

        Dong, X.,Kim, W.K.,Lim, Y.P.,Kim, Y.K.,Hur, Y. Elsevier Scientific Publishers Ireland Ltd 2013 Plant science Vol.199 No.-

        We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression.

      • Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana

        Lee, S.,Shin, K.,Lee, I.,Song, H.R.,Noh, Y.S.,Lee, R.A.,Lee, S.,Kim, S.Y.,Park, S.K.,Lee, S.,Soh, M.S. Elsevier Scientific Publishers Ireland Ltd 2013 Plant science Vol.208 No.-

        Flowering on time is a critically important for successful reproduction of plants. Here we report an early-flowering mutant in Arabidopsis thaliana, accelerated flowering 1-1D (afl1-1D) that exhibited pleiotropic developmental defects including semi-dwarfism, curly leaf, and increased branching. Genetic analysis showed that afl1-1D mutant is a single, dominant mutant. Chromosomal mapping indicates that AFL1 resides at the middle of chromosome 4, around which no known flowering-related genes have been characterized. Expression analysis and double mutant studies with late flowering mutants in various floral pathways indicated that elevated FT is responsible for the early-flowering of afl1-1D mutant. Interestingly, not only flowering-related genes, but also several floral homeotic genes were ectopically overexpressed in the afl1-1D mutants in both FT-dependent and -independent manner. The degree of histone H3 Lys27-trimethylation (H3K27me3) was reduced in several chromatin including FT, FLC, AG and SEP3 in the afl1-1D, suggesting that afl1-1D might be involved in chromatin modification. In support, double mutant analysis of afl1-1D and lhp1-4 revealed epistatic interaction between afl1-1D and lhp1-4 in regard to flowering control. Taken together, we propose that AFL1 regulate various aspect of development through chromatin modification, particularly associated with H3K27me3 in A. thaliana.

      • Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities

        Jung, E.S.,Lee, S.,Lim, S.H.,Ha, S.H.,Liu, K.H.,Lee, C.H. Elsevier Scientific Publishers Ireland Ltd 2013 Plant science Vol.210 No.-

        Metabolite profiling of rice leaves (Oryza sativa cv. Ilmi) was performed to investigate the short-term responses to different light-emitting diode (LED) lights, blue (B), green (G), red ®, white (W), shade (S), by using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) with multivariate analysis. Clear grouping patterns of each light-grown sample, except G and W, were shown in partial least squares-discriminant analysis (PLS-DA). Thirty-two primary metabolites and eleven secondary metabolites were selected and visualized using heatmap. Antioxidant activities of rice leaves followed the order B=W=G>R>S and isoorientin-2''-O-glucoside, isovitexin-2''-O-glucoside, isoorientin-2''-O-(6'''-ρ-coumaroyl)-glucoside, and isoscoparin-2''-O-glucoside showed similar relative differences and had higher Pearson's correlation coefficients than other metabolites in correlation network. According to the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) between B and R, the levels of amino acids, organic acids, fatty acids, and flavonoid glycosides were relatively high in B, whereas the glucose and fructose levels were high in R.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼