RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Multi-fidelity modeling and analysis of a pressurized vessel-pipe-safety valve system based on MOC and surrogate modeling methods

        Song Xueguan,Li Qingye,Liu Fuwen,Zhou Weihao,Zong Chaoyong 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.8

        A pressurized vessel-pipe-safety valve (PVPSV) combination is a commonly used configuration in nuclear power plants, and a good numerical model is essential for the system design, sizing and performance optimization. However, owing to the large-scale and cross-scale features, it is still a challenge to build a system level numerical model with both high accuracy and efficiency. To overcome this, a novel system level modeling method which can synthesize the advantages of various models is proposed in this paper. For system modeling, the analytical approach, the method of characteristics (MOC) and the surrogate model approach are respectively adopted to predict the dynamics of the pressure vessel, the connecting pipe and the safety valve, and different models are connected through data interfaces. With this system model, dynamic simulations were carried out and both the stable and the unstable system responses were obtained. For the model verification purpose, the simulation results were compared with those obtained from experiments and full CFD simulations. A good agreement and a better efficiency were obtained, verifying the ability of the model and the feasibility of the modeling method proposed in this paper

      • KCI등재

        Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

        Zong Chaoyong,Shi Maolin,Li Qingye,Liu Fuwen,Zhou Weihao,Song Xueguan 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.11

        Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the ksigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper

      • KCI등재

        Multifunctional Antibacterial and Hydrophobic Cotton Fabrics Treated with Cyclic Polysiloxane Quaternary Ammonium Salt

        Jian Liu,Chaohong Dong,Dongdong Wei,Zheng Zhang,Weihao Xie,Qun Li,Zhou Lu 한국섬유공학회 2019 Fibers and polymers Vol.20 No.7

        A novel polysiloxane quaternary ammonium salt (NCTSi) was synthesized and used as antibacterial andhydrophobic agent for cotton fabric. The chemical structures were characterized by FT-IR. The surface morphology of treatedcotton fabrics was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Thecotton fabrics treated with NCTSi showed excellent antibacterial properties against Gram-positive bacteria S. aureus andGram-negative bacteria E. coli. The E. coli antibacterial rate was about 99.52 % and the S. aureus antibacterial rate was about98.33 %, with only a slight decrease after 20 cycles of standard washing, to 91.43 % and 93.33 %, respectively. The inhibitionzone was 2 mm and 2.5 mm against E. coli and S. aureus when NCTSi concentration was 4 %. The treated cotton fabricsprovided excellent hydrophobic properties, and the water contact angle (WCA) reached 124.14 º compared to pure cottonfabrics. The mechanical properties and whiteness were also investigated. As a result of the performed modifications,multifunctional fabrics with a considerably increased hydrophobicity and high antibacterial property were obtained.

      • KCI등재

        TRIM22 promotes the proliferation of glioblastoma cells by activating MAPK signaling and accelerating the degradation of Raf-1

        Fei Xiaowei,Dou Ya-nan,Sun Kai,Wei Jialiang,Guo Qingdong,Wang Li,Wu Xiuquan,Lv Weihao,Jiang Xiaofan,Fei Zhou 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼