RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Two-dimensional frictionless large deformation contact problems using isogeometric analysis and Nitsche’s method

        Zhao Gang,Zhang Ran,Wang Wei,Du Xiaoxiao 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.1

        The simulation of large deformation contact problems has been a tough subject due to the existence of multiple nonlinearities, including geometric nonlinearity and contact interface nonlinearity. In this paper, we develop a novel method to compute the large deformation of 2D frictionless contact by employing Nitsche-based isogeometric analysis. The enforcement of contact constraints as one of the main issues in contact simulation is implemented by using Nitsche’s method, and the node-to-segment scheme is applied to the contact interface discretization. We detailedly derive the discrete formulations for 2D large deformation frictionless contact where NURBS is used for geometrical modeling and the Neo-Hookean hyperelastic materials are applied to describe the deformation of the model. The collocation method with Greville points is employed to integrate the contact interface and the classical Legendre–Gauss quadrature rule is used for contact bodies’ integration. The Lagrange multiplier method and penalty method are also implemented for comparison with Nitsche’s method. Several examples are investigated, and the obtained results are compared with that from commercial software ABAQUS to verify the effectiveness and accuracy of the Nitsche-based isogeometric analysis.

      • KCI등재

        Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution

        Zhaogang Ren,Fang Chen,Bin Wang,Zhongxian Song,Ziyu Zhou,Dong Ren 대한환경공학회 2020 Environmental Engineering Research Vol.25 No.4

        To address organic dye wastewater, economic and effective adsorbents are required. Here, magnetic biochar from alkali-activated rice straw (AMBC) was successfully synthesized using one-step magnetization and carbonization method. The alkaline activation caused the large specific surface area, high pore volume and abundant oxygen-containing groups of the AMBC, and the magnetization gave the AMBC a certain degree of electropositivity and fast equilibrium characteristics. These characteristics collectively contributed to a relative high adsorption capacity of 53.66 mg g<SUP>−1</SUP> for this adsorbent towards rhodamine B (RhB). In brief, RhB can spontaneously adsorb onto the heterogeneous surface of the AMBC and reach the equilibrium in 60 min. Although the initial pH, ionic strength and other substances of the solution affected the adsorption performance of the AMBC, it could be easily regenerated and reused with considerable adsorption content. Based on the results, H-bonds, π–π stacking and electrostatic interactions were speculated as the primary mechanisms for RhB adsorption onto the AMBC, which was also demonstrated by the FTIR analysis. With the advantageous features of low cost, easy separation, considerable adsorption capacity and favorable stability and reusability, the AMBC would be a potential adsorbent for removing organic dyes from wastewater.

      • KCI등재

        Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

        Liu, Zhaogang,Jin, Guangze,Kim, Ji Hong Korean Society of Forest Science 2009 한국산림과학회지 Vol.98 No.5

        Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

      • SrAl<sub>12</sub>O<sub>19</sub>:Pr<sup>3+</sup> nanodisks and nanoplates: New processing technique and photon cascade emission

        Nie, Zhaogang,Zhang, Jiahua,Zhang, Xia,Lim, Ki-Soo Cambridge University Press (Materials Research Soc 2009 Journal of materials research Vol.24 No.5

        <P>High-quality SrAl12O19:Pr<SUP>3+</SUP> nanodisks and nanoplates were fabricated via a new processing technique based on a modified polymer steric entrapment method. Serious agglomeration and large particle size distribution of final products, which usually occurred in the conventional method, were eliminated completely. The effects of new synthetic processes on the morphology, crystallization, and yield of products and the relevant mechanisms were discussed. As far as we know, SrAl12O19:Pr<SUP>3+</SUP> nanodisks with mean diameter ∼60 nm and thickness between 5 and 10 nm were successfully synthesized for the first time by this low-cost technique. The new synthetic method may provide a general route to synthesize other refractory mixed-oxide nanocrystals. Photon cascade emission involving transitions <SUP>1</SUP>S0-<SUP>1</SUP>I6 followed by <SUP>3</SUP>P0-<SUP>3</SUP>H4 in SrAl12O19:1% Pr<SUP>3+</SUP> nanodisks was investigated. Size-effect-induced blue shift of the 4<I>f</I>5<I>d</I> states of Pr<SUP>3+</SUP> was observed in SrAl12O19:1% Pr<SUP>3+</SUP> nanodisks, in which the quantum efficiency was preserved, as in the bulk counterparts.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼