RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Carbon precursor analysis for catalytic growth of carbon nanotube in flame synthesis based on semi-empirical approach

        Zainal Muhammad Thalhah,Mohd Yasin Mohd Fairus,Wan Ali Wan Fahmin Faiz,Tamrin Khairul Fikri,Ani Mohd Hanafi 한국탄소학회 2020 Carbon Letters Vol.30 No.5

        Although fame synthesis promises economic beneft and rapid synthesis of carbon nanotube (CNT), the lack of control and understanding of the efects of fame parameters (e.g., temperature and precursor composition) impose some challenges in modelling and identifying CNT growth region for obtaining better throughput. The present study presents an investigation on the types of carbon precursor that afect CNT growth region on nickel catalyst particles in an ethylene inverse difusion fame. An established CNT growth rate model that describes physical growth of CNT is utilised to predict CNT length and growth region using empirical inputs of fame temperature and species composition from the literature. Two variations of the model are employed to determine the dominant precursor for CNT growth which are the constant adsorption activation energy (CAAE) model and the varying adsorption activation energy (VAAE) model. The carbon precursors investigated include ethylene, acetylene, and carbon monoxide as base precursors and all possible combinations of the base precursors. In the CAAE model, the activation energy for adsorption of carbon precursor species on catalyst surface Ea,1 is held constant whereas in the VAAE model, Ea,1 is varied based on the investigated precursor. The sensitivity of the growth rate model is demonstrated by comparing the shifting of predicted growth regions between the CAAE model and the VAAE model where the CAAE model serves as a control case. Midpoint-based and threshold-based techniques are employed within each model to quantify the predicted CNT growth region. Growth region prediction based on the midpoint-VAAE approach demonstrates the importance of acetylene and carbon monoxide to some extent towards CNT growth. Ultimately, the threshold-VAAE model shows that the dominant precursor for CNT growth is the mixture of acetylene and carbon monoxide. A simplifed reaction mechanism is proposed to describe the surface chemistry for precursor reactions with nickel catalyst where decomposition of the ethylene fuel source into acetylene and carbon monoxide is accounted for by chemisorption.

      • SCIESCOPUSKCI등재

        Zero‑dimensional model for the prediction of carbon nanotube (CNT) growth region in heterogeneous methane‑flame environment

        Muhammad Thalhah Zainal,Norikhwan Hamzah,Mazlan Abdul Wahid,Natrah Kamaruzaman,Cheng Tung Chong,Mohd Hanafi Ani,Shokri Amzin,Tarit Das,Mohd Fairus Mohd Yasin 한국탄소학회 2023 Carbon Letters Vol.33 No.7

        The conventional multi-scale modelling approach that predicts carbon nanotube (CNT) growth region in heterogeneous flame environment is computationally exhaustive. Thus, the present study is the first attempt to develop a zero-dimensional model based on existing multi-scale model where mixture fraction z and the stoichiometric mixture fraction zst are employed to correlate burner operating conditions and CNT growth region for diffusion flames. Baseline flame models for inverse and normal diffusion flames are first established with satisfactory validation of the flame temperature and growth region prediction at various operating conditions. Prior to developing the correlation, investigation on the effects of zst on CNT growth region is carried out for 17 flame conditions with zst of 0.05 to 0.31. The developed correlation indicates linear ( zlb=1.54zst +0.11) and quadratic ( zhb=zst(7-13zst )) models for the zlb and zhb corresponding to the low and high boundaries of mixture fraction, respectively, where both parameters dictate the range of CNT growth rate (GR) in the mixture fraction space. Based on the developed correlations, the CNT growth in mixture fraction space is optimum in the flame with medium-range zst conditions between 0.15 and 0.25. The stronger relationship between growth-region mixture-fraction (GRMF) and zst at the near field region close to the flame sheet compared to that of the far field region away from the flame sheet is due to the higher temperature gradient at the former region compared to that of the latter region. The developed models also reveal three distinct regions that are early expansion, optimum, and reduction of GRMF at varying zst.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼