RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Open-Chamber Co-Culture Microdevices for Single-Cell Analysis of Skeletal Muscle Myotubes and Motor Neurons with Neuromuscular Junctions

        Nao Yamaoka,Kazunori Shimizu,Yu Imaizumi,Yohei Okada,Hiroyuki Honda 한국바이오칩학회 2019 BioChip Journal Vol.13 No.2

        Degeneration of motor neurons and skeletal muscles or the collapse of neuromuscular junctions (NMJs) causes progressive motility disturbances in many neuromuscular diseases. Although various microdevices for the co-culture of skeletal muscle myotubes and motor neurons have been developed to investigate neuromuscular diseases in vitro, it remains difficult to isolate single myotubes and motor neurons from the device for single-cell analyses, such as gene expression analysis. Here, we developed open chamber-coculture microdevices that contain cell culture chambers with narrow widths. Given the small chamber width (0.2 mm), the device significantly prevented the overlap among myotubes within the chamber. The percentage of non-overlapping was 95.6 ± 7.7% for the 0.2-mmwidth chamber and 11.8 ± 6.4% for the 7-mm-width chamber as a control. In addition, the device with the 0.2-mm chamber promoted myotube maturation, as indicated by the longer widths and lengths of the myotubes relative to those in the control chamber. Single C2C12 myotubes and human induced pluripotent stem cell (hiPSC)-derived motor neurons were successfully collected from the device with the 0.2-mm chamber using a micromanipulator equipped with a glass capillary. Furthermore, myotubes and hiPSC-derived motor neurons were co-cultured in the device with the 0.2- mm chamber, and the formation of NMJs were observed. Thus, the developed device is a useful tool for performing single-cell analysis for studying neuromuscular diseases in vitro.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼