RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재
      • SCIESCOPUSKCI등재

        Physiological, Pharmacological and Toxicological Implications of Heterodimeric Amino Acid Transporters

        Kanai, Yoshikatsu,Endou, Hitoshi The Korean Society of Pharmacology 2004 The Korean Journal of Physiology & Pharmacology Vol.8 No.3

        The heterodimeric amino acid transporter family is a subfamily of SLC7 solute transporter family which includes 14-transmembrane cationic amino acid transporters and 12-transmembrane heterodimeric amino acid transporters. The members of heterodimeric amino acid transporter family are linked via a disulfide bond to single membrane spanning glycoproteins such as 4F2hc (4F2 heavy chain) and rBAT $(related\;to\;b^0,\;^+-amino\;acid\;transporter)$. Six members are associated with 4F2hc and one is linked to rBAT. Two additional members were identified as ones associated with unknown heavy chains. The members of heterodimeric amino acid transporter family exhibit diverse substrate selectivity and are expressed in variety of tissues. They play variety of physiological roles including epithelial transport of amino acids as well as the roles to provide cells in general with amino acids for cellular nutrition. The dysfunction or hyperfunction of the members of the heterodimeric amino acid transporter family are involved in some diseases and pathologic conditions. The genetic defects of the renal and intestinal transporters $b^{0,+}AT/BAT1\;(b^{0,+}-type\;amino\;acid\;transporter/b^{0,+}-type\;amino\;acid\;transporter\;1)$ and $y^+LAT1\;(y^+L-type\;amino\;acid\;transporter\;1)$ result in the amino aciduria with sever clinical symptoms such as cystinuria and lysin uric protein intolerance, respectively. LAT1 is proposed to be involved in the progression of malignant tumor. xCT (x-C-type transporter) functions to protect cells against oxidative stress, while its over-function may be damaging neurons leading to the exacerbation of brain damage after brain ischemia. Because of broad substrate selectivity, system L transporters such as LAT1 transport amino acid-related compounds including L-Dopa and function as a drug transporter. System L also interacts with some environmental toxins with amino acid-related structure such as cysteine-conjugated methylmercury. Therefore, these transporter would be candidates for drug targets based on new therapeutic strategies.

      • KCI등재

        JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

        최대우,김도경,Yoshikatsu Kanai,Michael F. Wempe,Hitoshi Endou,김종근 대한약리학회 2017 The Korean Journal of Physiology & Pharmacology Vol.21 No.6

        Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

      • SCIESCOPUSKCI등재

        Gene Expression Profiles in T24 Human Bladder Carcinoma Cells by Inhibiting an L-type Amino Acid Transporter, LAT1

        Chairoungdua, Arthit,Iribe, Yuji,Kanai, Yoshikatsu,Endou, Hitoshi,Aisaki, Ken-ichi,Larashi, Katsuhide,Kanno, Jun,Baniasadi, Shadi 대한약학회 2007 Archives of Pharmacal Research Vol.30 No.4

        Inhibition of LAT1 (L-type amino acid transporter 1 ) activity in tumor cells could be effective in the inhibition of tumor cell growth by depriving tumor cells of essential amino acids. Because of the high level of expression of LAT1 in tumor cells, LAT1 inhibitors would be useful for anticancer therapy in suppressing tumor growth without affecting normal tissues. In recent years, cDNA microarray technique is useful technology for anticancer drug development. It allows identifying and characterizing new targets for developments in cancer drug therapy through the understanding genes involved in drug action. The present study was designed to investigate gene expression profile induced by LAT1 inhibitor using gene chip technology. Human bladder carcinoma cells (T24 cells) were treated with classical system L inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). Gene chip experiment was applied for treated and untreated cells after 3 and f2 h. Two independent experiments with a high degree of concordance identified the altered expression of 151 and 200 genes after 3 and 12 h BCH treatment. Among these genes, 132 and 13 were up-regulated and 19 and 187 were down-regulated by 3 and 12 h BCH treatment respectively. We found that BCH affected the expression of a large number of genes that are related to the control of cell survival and physiologic behaviors. These data are useful for understanding of intracellular signaling of cell growth inhibition induced by LAT1 inhibitors as candidate for anticancer drug therapy.

      • KCI등재

        Gene Expression Profiles in T24 Human Bladder Carcinoma Cells by Inhibiting an L-type Amino Acid Transporter, LAT1

        Shadi Baniasadi,Arthit Chairoungdua,Yuji Iribe,Yoshikatsu Kanai,Hitoshi Endou,Ken-ichi Aisaki,Katsuhide Igarashi,Jun Kanno 대한약학회 2007 Archives of Pharmacal Research Vol.30 No.4

        Inhibition of LAT1 (L-type amino acid transporter 1) activity in tumor cells could be effective in the inhibition of tumor cell growth by depriving tumor cells of essential amino acids. Because of the high level of expression of LAT1 in tumor cells, LAT1 inhibitors would be useful for anticancer therapy in suppressing tumor growth without affecting normal tissues. In recent years, cDNA microarray technique is useful technology for anticancer drug development. It allows identifying and characterizing new targets for developments in cancer drug therapy through the understanding genes involved in drug action. The present study was designed to investigate gene expression profile induced by LAT1 inhibitor using gene chip technology. Human bladder carcinoma cells (T24 cells) were treated with classical system L inhibitor 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid (BCH). Gene chip experiment was applied for treated and untreated cells after 3 and 12 h. Two independent experiments with a high degree of concordance identified the altered expression of 151 and 200 genes after 3 and 12 h BCH treatment. Among these genes, 132 and 13 were up-regulated and 19 and 187 were down-regulated by 3 and 12 h BCH treatment respectively. We found that BCH affected the expression of a large number of genes that are related to the control of cell survival and physiologic behaviors. These data are useful for understanding of intracellular signaling of cell growth inhibition induced by LAT1 inhibitors as candidate for anticancer drug therapy.

      • SCIESCOPUSKCI등재

        JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

        Dae Woo Choi,Do Kyung Kim,Yoshikatsu Kanai,Michael F. Wempe,Hitoshi Endou,Jong-Keun Kim 대한생리학회-대한약리학회 2017 The Korean Journal of Physiology & Pharmacology Vol.13 No.3

        Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

      • SCIESCOPUSKCI등재

        JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

        Choi, Dae Woo,Kim, Do Kyung,Kanai, Yoshikatsu,Wempe, Michael F.,Endou, Hitoshi,Kim, Jong-Keun The Korean Society of Pharmacology 2017 The Korean Journal of Physiology & Pharmacology Vol.21 No.6

        Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

      • Inhibition of L-Type Amino Acid Transporter Modulates the Expression of Cell Cycle Regulatory Factors in KB Oral Cancer Cells

        Kim, Chun Sung,Moon, In-Sung,Park, Ju-Hyun,Shin, Woo-Cheol,Chun, Hong Sung,Lee, Sook-Young,Kook, Joong-Ki,Kim, Heung-Joong,Park, Joo-Cheol,Endou, Hitoshi,Kanai, Yoshikatsu,Lee, Byung-Kwon,Kim, Do Kyun Pharmaceutical Society of Japan 2010 BIOLOGICAL & PHARMACEUTICAL BULLETIN Vol.33 No.7

        <P>The purpose of this study was to examine the effect of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), an inhibitor of L-type amino acid transporters, on the cell growth suppression in KB human oral cancer cells and to study the roles of cell cycle regulatory factors in the BCH-induced growth inhibition. The effect of BCH on cell growth suppression and the influence of BCH to cell cycle regulatory factors in KB cell growth inhibition were examined using cell cycle analysis, immunoblotting and immunoprecipitation. The BCH treatment induced cell cycle arrest at G1 phase in KB cells. The expression of cyclin D3 was remarkably decreased by BCH treatment. The BCH inhibited the expression of cyclin-dependent protein kinase 6 (CDK6) in a time-dependent manner. In addition, the expression of CDK inhibitor p27 was increased by BCH treatment in KB cells, but not CDK inhibitors p21 and p15. These results suggest that, in KB cells, the inhibition of LAT1 by BCH causes cell cycle arrest at G1 phase by inhibiting cyclin D3–CDK6 complex whereas increasing expression of a CDK inhibitor p27.</P>

      • KCI등재

        Reabsorption of Neutral Amino Acids Mediated by Amino Acid Transporter LAT2 and TAT1 in The Basolateral Membrane of Proximal Tubule

        Sun Young Park,김종근,In Jin Kim,Bong Kyu Choi,Kyu Yong Jung,Seoul Lee,Kyung Jin Park,Arthit Chairoungdua,Yoshikatsu Kanai,Hitoshi Endou,Do Kyung Kim 대한약학회 2005 Archives of Pharmacal Research Vol.28 No.4

        In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

      • SCIESCOPUSKCI등재

        Reabsorption of Neutral Amino Acids Mediated by Amino Acid Transporter LAT2 and TAT1 in The Basolateral Membrane of Proximal Tubule

        Park Sun Young,Kim Jong-Keun,Kim In Jin,Choi Bong Kyu,Jung Kyu Yong,Lee Seoul,Park Kyung Jin,Chairoungdua Arthit,Kanai Yoshikatsu,Endou Hitoshi,Kim Do Kyung The Pharmaceutical Society of Korea 2005 Archives of Pharmacal Research Vol.28 No.4

        In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼