RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Compensated Motion and Position Estimation of a Cable-driven Parallel Robot Based on Deep Reinforcement Learning

        Huaishu Chen,Min-Cheol Kim,Yeongoh Ko,Chang-Sei Kim 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.11

        Unlike conventional rigid-link parallel robots, cable-driven parallel robots (CDPRs) have distinct advantages, including lower inertia, higher payload-to-weight ratio, cost-efficiency, and larger workspaces. However, because of the complexity of the cable configuration and redundant actuation, model-based forward kinematics and motion control necessitate high effort and computation. This study overcomes these challenges by introducing deep reinforcement learning (DRL) into the cable robot and achieves compensated motion control by estimating the actual position of the end-effector. We used a random behavior strategy on a CDPR to explore the environment, collect data, and train neural networks. We then apply the trained network to the CDPR and verify its efficacy. We also addressed the problem of asynchronous state observation and action execution by delaying the action execution time in one cycle and adding this action to be executed to match the motion control command. Finally, we implemented the proposed control method to a high payload cable robot system and verified the feasibility through simulations and experiments. The results demonstrate that the end-effector position estimation accuracy can be improved compared with the numerical model-based forward kinematics solution and the position control error can be reduced compared with the conventional open-loop control and the open-loop control with tension distribution form.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼