RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical Modeling on Post-Local Buckling Behavior of Circular and Square Concrete-Filled Steel Tubular Beam Columns

        Yongtao Bai,Xuchuan Lin,Ben Mou 한국강구조학회 2016 International Journal of Steel Structures Vol.16 No.2

        In concrete-filled steel tubular (CFST) beam-columns under cyclic loadings, local buckling of restrained steel tube, crushing and slipping of the confined concrete could have significant influences on strength and stiffness degradation. This paper presents a numerical model based on fiber element discretization for simulating the deterioration behaviour of both rectangular and circular CFST beam columns under axial load and cyclic loading. Uniaxial stress-strain relationships for steel and concrete in CFST beam columns are proposed by introducing unified parameters to control the extent of deterioration. Axial contraction caused by local buckling was accounted by defining an inelastic region that promises plasticity and strength degradation. The numerical model was validated by comparing the simulation results and the associated experimental results. The influences of diameter-to-thickness ratio, concrete and steel strength ranging from normal strength to high strength on the deterioration behavior of circular and rectangular CFST beam-columns were analyzed. Finally, through recognizing the limit state to trigger global strength degradation of a CFST frame, the developed numerical model is applicable for simulating global behavior of CFST frames under collapse-level deformations.

      • KCI등재

        Welding Performance of Low-Yield-Strength Steel Shear Panel Dampers Under Large Plastic Deformation

        Chaofeng Zhang,Shixi Chen,Junhua Zhao,Xuchuan Lin,Lingxin Zhang,Jiajia Zhu,Weili Wang 한국강구조학회 2021 International Journal of Steel Structures Vol.21 No.6

        Characterized by large plastic deformation and energy-dissipation capacity, low-yield-strength steel shear panel dampers (LYSPDs) are widely used as energy-dissipating members in seismic engineering. However, the eff ect of welding on the properties of LYSPDs remains unclear. Hence, in this study, we investigated the matching performance between low-yieldstrength steel (LYS) and two diff erent welding materials. Subsequently, the quality of welding between LYS and dissimilar metals was investigated. Furthermore, the fracture characteristics of the welding seam of LYS under large plastic deformation were explored. Finally, the welding performance of LYSPDs under large plastic deformation was verifi ed under cyclic loading. The results of this study are signifi cant in terms of the eff ect of welding on the properties of LYSPDs.

      • Behaviors of UHPC-filled Q960 high strength steel tubes under lowtemperature compression

        Jia-Bao Yan,Shunnian Hu,Yan-Li Luo,Xuchuan Lin,Yun-Biao Luo,Lingxin Zhang 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.43 No.2

        This paper firstly proposed high performance composite columns for cold-region infrastructures using ultra-high performance concrete (UHPC) and ultra-high strength steel (UHSS) Q960E. Then, 24 square UHPC-filled UHSS tubes (UHSTCs) at low temperatures of -80, -60, -30, and 30℃ were performed under axial loads. The key influencing parameters on axial compression performance of UHSS were studied, i.e., temperature level and UHSS-tube wall thickness (t). In addition, mechanical properties of Q960E at low temperatures were also studied. Test results revealed low temperatures improved the yield/ultimate strength of Q960E. Axial compression tests on UHSTCs revealed that the dropping environmental temperature increased the compression strength and stiffness, but compromised the ductility of UHSTCs; increasing t significantly increased the strength, stiffness, and ductility of UHSTCs. This study developed numerical and theoretical models to reproduce axial compression performances of UHSTCs at low temperatures. Validations against 24 tests proved that both two methods provided reasonable simulations on axial compression performance of UHSTCs. Finally, simplified theoretical models (STMs) and modified prediction equations in AISC 360, ACI 318, and Eurocode 4 were developed to estimate the axial load capacity of UHSTCs at low temperatures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼