RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        PRDC-A software package for personnel radiation dose calculation

        Kim, Chan-Hyeong,Cho, Sang Hyun,Xu, X. George Nuclear Technology Publishing 2006 Radiation Protection Dosimeetry Vol.118 No.3

        <P>To determine effective dose, we usually need to use a very complicated human body model and a sophisticated computer code to transport radiations in the body model and surrounding medium, which is not very easy to practicing health physicists in the field. This study develops and tests a software package, called PRDC (Personnel Radiation Dose Calculation), which calculates effective dose and radiation doses to various organs/tissues and personal dosemeters based on a series of interpolations.</P>

      • KCI등재

        A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

        Peng Zhao,Gao Ning,Wu Bingzhi,Chen Zhi,Xu X. George 대한방사선방어학회 2022 방사선방어학회지 Vol.47 No.3

        The exciting advancement related to the “modeling of digital human” in terms of a computa- tional phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convo- lutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These ad- vancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demon- strated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radia- tion-transport Computations in Heterogeneous EnviRonments) to problems in radiation pro- tection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calcula- tions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼