RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Preparation of carboxymethyl chitosan/double-formaldehyde cellulose based hydrogel loaded with ginger essential oil nanoemulsion for meat preservation

        Xutao Mai,Xinxiao Zhang,Minmin Tang,Yuhang Zheng,Daoying Wang,Weimin Xu,Fang Liu,Zhilan Sun 한국식품과학회 2024 Food Science and Biotechnology Vol.33 No.6

        An antibacterial nano-hydrogel (ginger essential oil nanoemulsion hydrogel, GEONH) based on Schiff base reaction was prepared using double-formaldehyde micro fibrillated cellulose (DAMFC) and carboxymethyl chitosan (CMCS) loaded with ginger essential oil nanoemulsion (GEON). It was found that when the mass ratio of DAMFC/CMCS/GEON was 1/9/270, the gel time, the water absorbency, gel strength, and morphology were the best. The results of X-ray diffraction and FT-IR confirmed that the aldehyde group on the DAMFC molecular chain formed a stable chemical crosslinking with the amino group on the CMCS molecular chain, resulting in a change in the crystal structure. GEONH showed excellent bactericidal activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Simultaneously, the prepared GEONH decreased the total viable count, Malondialdehyde, and total sulfhydryl content and improved the taste in the storage of boiled salted duck. Therefore, GEONH film is a promising fresh-keeping packaging for storing meat products.

      • KCI등재

        Genome-Wide Identification and Functional Analysis of Long Non-coding RNAs in Sesame Response to Salt Stress

        Gong Huihui,You Jun,Zhang Xiurong,Liu Yanzhong,Zhao Fengtao,Cui Xinxiao,Zhang Yujuan 한국식물학회 2021 Journal of Plant Biology Vol.64 No.6

        Long non-coding RNAs (lncRNAs) play important roles in various biological regulatory processes in which complicated mechanisms are involved, as well as stress-responsive regulation. However, the number, characteristics, sequences and possible effects of lncRNAs in sesame response to salt stress are poorly understood. In this study, a total of 2482 lncRNAs were identified from two contrasting sesame genotypes under salt stress using high-throughput RNA sequencing, of which 599 were intergenic lncRNAs, 293 were antisense lncRNAs and 786 lncRNAs may encode proteins. Expression pattern analysis showed that most lncRNAs were expressed at a low level and a total of 700 differentially expressed lncRNAs were characterized as salt responsive in sesame. A large number of potential target genes of lncRNAs were predicted, and functional annotation analysis indicated that the differentially expressed lncRNAs in salt stress may regulate protein-coding genes involved in several important pathways related to glycolysis/gluconeogenesis, flavonoid biosynthesis, monoterpenoid biosynthesis, biotin metabolism, galactose metabolism, cyanoamino acid metabolism and carotenoid biosynthesis. Integrated analysis of lncRNAs and mRNAs revealed the regulatory role of lncRNAs associated with salt resistance in sesame, and provided convincing proof of the interplay of specific candidate target genes with lncRNAs. Our results indicated that a comprehensive set of lncRNAs with potential target genes were responsive to salt stress in sesame seedlings. These findings provided important information on salinity responses and adaptation of sesame to salt stress and may constitute useful resources for more comprehensive studies on gene regulation in sesame.

      • KCI등재

        The influence of ultrasound and adenosine 5’-monophosphate marination on tenderness and structure of myofibrillar proteins of beef

        Ye Zou,Heng Yang,Muhan Zhang,Xinxiao Zhang,Weimin Xu,Daoying Wang 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.10

        Objective: The aim was to investigate the influence of ultrasound and adenosine 5’-monophosphate (AMP) marination (UAMP) on tenderness and structure of myofibrillar proteins of beef. Methods: Five groups, the untreated meat (Control), deionized water marination (DW), ultrasound followed by DW (UDW), AMP marination (AMP), and ultrasound followed by AMP (UAMP) were studied. Myofibrillar fragmentation, cooking loss, shear force, thermograms, histological observation of meats and myofibrillar proteins properties were investigated in these different treatments. Results: The results showed that UAMP significantly increased myofibrillar fragmentation index from 152 (Control), 231 (AMP), and 307 (UDW) to 355 (p<0.05), respectively. The lowest cooking loss, shear force and peak denaturation temperature were observed in UAMP. In histological observation, UDW and UAMP had more fragmented muscular bundles than the others. Furthermore, a drastic increase in α-helix and decrease in β-sheet of myofibrillar proteins was observed in UAMP, implying the disaggregation of protein samples. The synchronous fluorescence spectra of myofibrillar proteins in UAMP suggested the combination of ultrasound and AMP could accelerate the unfolding molecular structure and destroying hydrophobic interactions. The results of circular dichroism and synchronous fluorescence spectra for myofibrillar proteins coincided with the microstructures of beef. Conclusion: The results indicate that ultrasound combined with AMP improved meat tenderness not only by disruption in muscle integrity, increasing water retention, but also altering their spatial structure of myofibrillar proteins.

      • KCI등재

        A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

        ( Xin Xiao ),( Ruirui Zhang ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.5

        With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼