RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        MCT2 overexpression promotes recovery of cognitive function by increasing mitochondrial biogenesis in a rat model of stroke

        Xiaorong Yu,Rui Zhang,Cunsheng Wei,Yuanyuan Gao,Yanhua Yu,Lin Wang,Junying Jiang,Xuemei Zhang,Junrong Li,Xuemei Chen 한국통합생물학회 2021 Animal cells and systems Vol.25 No.2

        Monocarboxylate transporter 2 (MCT2) is the predominant monocarboxylate transporter expressed by neurons. MCT2 plays an important role in brain energy metabolism. Stroke survivors are at high risk of cognitive impairment. We reported previously that stroke-induced cognitive impairment was related to impaired energy metabolism. In the present study, we report that cognitive function was impaired after stroke in rats. We found that MCT2 expression, but not that of MCT1 or MCT4, was markedly decreased in the rat hippocampus at 7 and 28 days after transient middle cerebral artery occlusion (tMCAO). Moreover, MCT2 overexpression promoted recovery of cognitive function after stroke. The molecular mechanism underlying these effects may be related to an increase in adenosine monophosphate-activated protein kinase-mediated mitochondrial biogenesis induced by overexpression of MCT2. Our findings suggest that MCT2 activation ameliorates cognitive impairment after stroke.

      • KCI등재

        Joint Subcarrier and Bit Allocation for Secondary User with Primary Users` Cooperation

        ( Xiaorong Xu ),( Yu-dong Yao ),( Sanqing Hu ),( Yingbiao Yao ) 한국인터넷정보학회 2013 KSII Transactions on Internet and Information Syst Vol.7 No.12

        Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users` cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU`s spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.

      • KCI등재

        Preparation and self-assembly properties of surface active hydrophobically associating polyacrylamide

        GaoShen Su,Yue Luo,Fan Li,Xiaorong Yu 한국자원공학회 2019 Geosystem engineering Vol.22 No.1

        A novel surface-active polymer (PCPAM) was synthesized by free-radical polymerization of acrylamide (AM), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and surfmer (ACP) which was previously prepared by reacting Nonaphenol polyethyleneoxy ether-10 (OP-10) and allyl chloride. The structure of PCPAM was characterized by FT-IR, 1H-NMR, GPC and TGA. In addition, the self-assembly properties of the copolymer were studied with viscosimetry and fluorescence probe method. Moreover, the activity of PCPAM solution was examined with surface tension, IFT and emulsifying ability. Results indicated that, the solution viscosity proportionally increased with PCPAM concentrations, leading in the formation of a three-dimensional network with surface activity and thermal stability, and the CAC of PCPAM was about 1.5 g/L, PCPAM can reduce the interfacial tension between crude oil and water, the IFT value was about 0.029 mN/m when the concentration of PCPAM beyond CAC and have good ability to form stable emulsions. Furthermore, the core flooding experimental demonstrated that the oil displacement efficiency of PCPAM increased by about 17.4%, which is better than 13.87% and 15.55% based on HPAM flooding and HPAM/surfactant flooding, respectively. All of these properties indicate that the PCPAM was an excellent chemical for chemical enhanced oil recovery.

      • KCI등재

        Biosynthesis of Three Chalcone β-D-glucosides by Glycosyltransferase from Bacillus subtilis ATCC 6633

        ( Yinuo Fei ),( Yan Shao ),( Weiwei Wang ),( Yatian Cheng ),( Boyang Yu ),( Xiaorong He ),( Jian Zhang ) 한국미생물생명공학회(구 한국산업미생물학회) 2021 한국미생물·생명공학회지 Vol.49 No.2

        Chalcones exhibit multiple biological activities. Various studies have attempted to modify the structure of chalcones with a special focus on the addition of substituents to the benzene rings. However, these chemical modifications did not improve the water solubility and bioavailability of chalcones. Glycosylation can markedly affect the physical and chemical properties of hydrophobic compounds. Here, we evaluated the ability of a highly promiscuous glycosyltransferase (GT) BsGT1 from Bacillus subtilis ATCC 6633 to biosynthesize chalcone glucosides. Purified BsGT1 catalyzed the conversion of 4'-hydroxychalcone (compound 1), 4'-hydroxy-4-methylchalcone (compound 2), and 4-hydroxy-4'-methoxychalcone (compound 3), into chalcone 4'-O-β-D-glucoside (compound 1a), 4-methylchalcone 4'-O-β-D-glucoside (compound 2a), and 4'- methoxychalcone 4-O-β-D-glucoside (compound 3a), respectively. To avoid the addition of expensive uridine diphosphate glucose (UDP-Glc), a whole-cell biotransformation system was employed to provide a natural intracellular environment for in situ co-factor regeneration. The yields of compounds 1a, 2a, and 3a were as high as 90.38%, 100% and 74.79%, respectively. The successful co-expression of BsGT1 with phosphoglucomutase (PGM) and UDP-Glc pyrophosphorylase (GalU), which are involved in the biosynthetic pathway of UDP-Glc, further improved the conversion rates of chalcones (the yields of compounds 1a and 3a increased by approximately 10%). In conclusion, we demonstrated an effective whole-cell biocatalytic system for the enzymatic biosynthesis of chalcone β-D-glucoside derivatives.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼