RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Determination of Catechin Compounds in Korean Green Tea Infusions under Various Extraction Conditions by High Performance Liquid Chromatography

        Won Jo Cheong*,Moon Hee Park,Gyoung Won Kang,Joung Ho Ko,서유진 대한화학회 2005 Bulletin of the Korean Chemical Society Vol.26 No.5

        Liquid chromatographic methods with UV and fluorescence detection have been used to determine the levels of (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate in Korean green tea infusions. The extracts of Korean green tea leaves or powders in water at various temperatures (100 °C, 80 °C, 60 °C) and time, were washed with chloroform and re-extracted to ethyl acetate. The ethyl acetate phase was dried and re-dissolved in methanol and analyzed. Five catechin compounds were separated by gradient elution. The flavonoids were found decomposed on prolonged extraction, thus exhaustive extraction by a Soxhlet apparatus was found useless for green tea. Some unknown components were found in the extracts at 100 oC. When the green tea was filtered and re-extracted with new fresh water, still some flavonoids were extracted. However, the contents of flavonoids in the third extract were found negligible. The flavonoid extraction rate of green tea powders was higher than that of green tea leaves, but flavonoid decomposition of green tea powders was also faster than that of green tea leaves. The traditional way of drinking green tea was found appropriate in view of flavonoids intake.

      • SCOPUSKCI등재

        The Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids II: The Effect of Solvent Structure

        Cheong, Won-Jo Korean Chemical Society 2003 Bulletin of the Korean Chemical Society Vol.24 No.8

        The effect of solvent structure on the slope in the plot of ln K vs. solute carbon number was examined. It was found that the free energy of methylene group transfer from the gas phase into a solvent was always negative and that the absolute magnitude of interaction free energy between the methylene group and the solvent was always larger than the absolute magnitude of cavity formation free energy of the methylene group in the solvent. Thus, the slope in the plot of ln K vs. solute carbon number was always positive and its value decreases with increase of solvent polarity since the cavity formation energy of the CH₂ unit increases with increase of solvent polarity while the dispersive interaction energy of the CH₂ unit is virtually invariant. We also examined the effect of sequential addition of CH₂ unit to a solvent molecule upon ln K for three homologous series of solvents: n-alkanes, n-alcohols, and n-nitriles. Characteristic trends in the plots of ln K vs. solvent carbon number were observed for individual solvent groups. A decrease of ln K with solvent carbon number was observed for n-alkanes. An abrupt increase in ln K followed by levelling off was observed for n-alcohols while a final slight decrease in ln K after an abrupt increase followed by rapid levelling off was noted for n-nitriles. All of theses phenomena were found related to variation in cavity formation energy. It was clearly shown that a structural change of a polar solvent by sequential addition of CH₂ units causes an abrupt polarity decrease initially, then gradual levelling off, and finally, conversion to a virtually nonpolar solvent if enough CH₂ units are added.

      • SCOPUSKCI등재

        A Study of the Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids: The Effect of Solute Structure

        Cheong, Won-Jo Korean Chemical Society 2002 Bulletin of the Korean Chemical Society Vol.23 No.3

        Literature data measured by the author have been processed to report on the effect of solute structure on gas liquid partition coefficients of eleven normal, branched and cyclic alkanes ranging in carbon number from five to nine in sixty nine low molecular weight liquids. The alkane solutes are n-pentane(p), n-hexane(hx), n-heptane(hp), n-octane(o), n-nonane(n), 2-methylpentane(mp), 2,5-dimethylpentane(dp), 2,5-dimethylhexane(dh), 2,3,4-trimethylpentane(tp), cyclohexane(ch), and ethylcyclohexane(ec). The solvent set encompasses most of those studied by Rohrschneider as well as three homologous series of solvents (n-alkanes, 1-alcohols and 1-nitriles) and several perfluorinated alkanes and highly fluorinated alcohols. An excellent linear relationship was observed between lnK and the carbon number of n-alkanes. The effective carbon numbers of branched and cyclic alkanes were determined in a similar fashion to the method of Kovats index. We found that the logarithm of solute vapor pressure multiplied by solute molar volume was a perfect descriptor for the linear relationship with the median effective carbon number.

      • SCOPUSKCI등재

        A Modified Adsorption Model for Retention of Nonpolar Solutes in Reversed Phase Liquid Chromatography

        Cheong Won Jo Korean Chemical Society 1994 Bulletin of the Korean Chemical Society Vol.15 No.1

        The adsorption model in reversed phase liquid chromatography has been critically examined. It has been found that use of the Everett type surface activity coefficient for the solute in the stationary phase is not useful to study the retention characteristics of a nonpolar solute. We suggest a modified model. In this model it is assumed that the displaced modifier molecules from the surface monolayer do not transfer into the bulk mobile phase but stick to the nonpolar solute which has displaced them. In addition, we prefer to use an apparent stationary phase activity coefficient of the soluie instead of the Everett type activity coefficient. This modified adsorption model well explains the mobile and stationary phase effects on the solute retention upon variation of mobile phase composition.

      • KCI등재

        The Positional Effect of Solute Functional Group among Positional Isomers of Phenylpropanol in Hydroxyl Group-Solvent Specific Interactions in Methanol/Water Mixed Solvents Monitored by HPLC

        Won Jo Cheong,Joung Ho Ko,Gyoung Won Kang 대한화학회 2005 Bulletin of the Korean Chemical Society Vol.26 No.8

        We have evaluated the hydroxyl group-solvent specific interactions by using a Lichrosorb RP18 stationary phase and by measuring the retention data of carefully selected solutes in 50/50, 60/40, 70/30, 80/20, and 90/10(v/v%) methanol/water eluents at 25, 30, 35, 40, 45, and 50 oC. The selected solutes are 3 positional isomers of phenylpropanol, that is, 1-phenyl-1-propanol, 1-phenyl-2-propanol, and 3-phenyl-1-propanol. There exist clear discrepancies in Ho (solute transfer enthalpy from the mobile to the stationary phase) and TSo (solute transfer entropy) among positional isomers. The difference in Ho and TSo between secondary alcohols (1-phenyl-1-propanol and 1-phenyl-2-propanol)is negligible compared to the difference between the primary alcohol (1-phenyl-3-propanol) and secondary alcohols. The TSo values of 3-phenyl-1-propanol are close to those of butylbenzene while the TSo values of secondary alcohols are close to those of propylbenzene. The difference in Ho (specific solute-mobile phase interaction enthalpy) between the primary alcohol and the secondary alcohol decreases with increase of methanol content in the mobile phase. A unique observation is an extremum for 1-phenyl-3-propanol in the plot of TSo vs. methanol volume %. The positive sign of TSo of 3-phenyl-1-propanol implies that the entropy of 3-phenyl-1-propanol is greater than that of the hypothetical alkylbenzene (the same size and shape as phenylpropanol) in the mobile phase.

      • SCOPUSKCI등재

        The Hydroxyl Group-Solvent and Carbonyl Group-Solvent Specific Interactions for Some Selected Solutes Including Positional Isomers in Acetonitrile/Water Mixed Solvents Monitored by HPLC

        Cheong, Won-Jo,Keum, Young-Ik,Ko, Joung-Ho Korean Chemical Society 2002 Bulletin of the Korean Chemical Society Vol.23 No.1

        We have evaluated the specific hydroxyl group-solvent and carbonyl group-solvent interactions by using an Alltima C18 stationary phase and by measuring the retention data of carefully selected solutes in 60/40, 70/30, and 80/20(v/v%) acetonitrile/water eluents at 25, 30, 35, 40, 45, and 50 oC. The selected solutes are phenol, acetophenone, alkylbenznes(benzene to hexylbenznene), 4 positional isomers of phenylbutanol, 5-phenyl-1-pentanol, 3 positional isomers of alkylarylketone derived from butylbenzene, and 1-phenyl-2-hexanone. The magnitudes of hydroxyl group-acetonitrile/water specific interaction enthalpies are larger than those of carbonyl group-acetonitrile/water specific interaction enthalpies in general while the magnitudes of carbonyl group-methanol/water specific interaction enthalpies are larger than those of hydroxyl group-methanol/water specific interactions. We observed clear discrepancies in functional group-solvent specific interaction among positional isomers. The variation trends of solute transfer enthalpies and entropies with mobile phase composition in the acetonitrile/water system are much different from those in the methanol/water system. The well-known pocket formation of acetonitrile in aqueous acetonitrile mixtures has proven to be useful to explain such phenomena.

      • Gas chromatography-mass spectrometric method for the screening and quantification of illicit drugs and their metabolites in human urine using solid-phase extraction and trimethylsilyl derivatization

        Cheong, Jae Chul,Suh, Sung Ill,Jun Ko, Beom,Kim, Jin Young,In, Moon Kyo,Cheong, Won Jo WILEY-VCH Verlag 2010 Journal of separation science Vol.33 No.12

        <P>A simple and rapid GC-MS method has been developed for the screening and quantification of many illicit drugs and their metabolites in human urine by using automatic SPE and trimethylsilylation. Sixty illicit drugs, including parent drugs and their metabolites that are possibly abused in Korea, can be monitored by this method. Among them, 24 popularly abused illicit drugs were selected for quantification. Very delicate optimizations were carried out in SPE, trimethylsilylation derivatization, and GC/MS to enable such remarkable achievements. Trimethylsilylated analytes were well separated within 21 min by GC-MS. In the validation results, the LOD of all the analytes were in the range of 2–75 ng/mL. The LOQ of the quantified analytes were in the range of 5–98 ng/mL. The linearity (r<SUP>2</SUP>) of the quantified analytes ranged 0.990–1.000 in each concentration range between 10 and 1000 ng/mL. The mean recoveries ranged from 62 to 126% at three different concentrations of each analyte. The inter-day and inter-person accuracies were within −13.3∼14.9%, and −10.1∼13.0%, respectively, and the inter-day and inter-person precisions were less than 12.9%. The method was reliable and efficient for the screening and quantification of abused illicit drugs in routine urine analysis.</P>

      • SCOPUSKCI등재

        The Positional Effect of Solute Functional Group among Positional Isomers of Phenylpropanol in Hydroxyl Group-Solvent Specific Interactions in Methanol/Water Mixed Solvents Monitored by HPLC

        Cheong, Won-Jo,Ko, Joung-Ho,Kang, Gyoung-Won Korean Chemical Society 2005 Bulletin of the Korean Chemical Society Vol.26 No.8

        We have evaluated the hydroxyl group-solvent specific interactions by using a Lichrosorb RP18 stationary phase and by measuring the retention data of carefully selected solutes in 50/50, 60/40, 70/30, 80/20, and 90/10(v/v%) methanol/water eluents at 25, 30, 35, 40, 45, and 50 ${^{\circ}C}$. The selected solutes are 3 positional isomers of phenylpropanol, that is, 1-phenyl-1-propanol, 1-phenyl-2-propanol, and 3-phenyl-1-propanol. There exist clear discrepancies in ${\Delta}H^o$ (solute transfer enthalpy from the mobile to the stationary phase) and $T{\Delta}S^o$ (solute transfer entropy) among positional isomers. The difference in ${\Delta}H^o$ and $T{\Delta}S^o$ between secondary alcohols (1-phenyl-1-propanol and 1-phenyl-2-propanol)is negligible compared to the difference between the primary alcohol (1-phenyl-3-propanol) and secondary alcohols. The $T{\Delta}S^o$ values of 3-phenyl-1-propanol are close to those of butylbenzene while the $T{\Delta}S^o$ values of secondary alcohols are close to those of propylbenzene. The difference in ${\Delta}{\Delta}H^o$ (specific solute-mobile phase interaction enthalpy) between the primary alcohol and the secondary alcohol decreases with increase of methanol content in the mobile phase. A unique observation is an extremum for 1-phenyl-3-propanol in the plot of $T{\Delta}{\Delta}S^o$ vs. methanol volume %. The positive sign of $T{\Delta}{\Delta}S^o$ of 3-phenyl-1-propanol implies that the entropy of 3-phenyl-1-propanol is greater than that of the hypothetical alkylbenzene (the same size and shape as phenylpropanol) in the mobile phase.

      • SCOPUSKCI등재

        Porous Silica Particles As Chromatographic Separation Media: A Review

        Cheong, Won Jo Korean Chemical Society 2014 Bulletin of the Korean Chemical Society Vol.35 No.12

        Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

      • SCOPUSKCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼