RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Improved SVPWM modulation method for three‑phase dual‑input dual‑buck inverters

        Yongshuai Wang,Hongjuan Ge,Hang Yin,Bingjie Wu,Fan Yang 전력전자학회 2023 JOURNAL OF POWER ELECTRONICS Vol.23 No.5

        The traditional modulation method for three-phase dual-input dual-buck inverters is level-shifted sine pulse width modulation. The disadvantage of this method is that the dc voltage utilization ratio is low and the software fault tolerance is difficult to realize. To solve these problems, an improved SVPWM suitable for this inverter is proposed in this paper. By analyzing the switch modes and bridge arm midpoint level of this inverter, 27 voltage vectors are obtained. According to the obtained long vector cluster, medium vector cluster, and short vector cluster, six modulation sectors are obtained, and each modulation sector has four modulation regions. When the voltage of the inverter low-voltage dc source changes, the associated vector changes as well. How the modulation region changes when the associated vector changes is analyzed. The action time of each vector in each modulation region is deduced. In addition, the action order of each vector involved in vector synthesis is optimized. A 2 kW prototype was built to carry out experimental research. Experimental results show that this modulation method improves the dc voltage utilization ratio, reduces the loss, and improves the efficiency of the inverter.

      • KCI등재

        Acidification of drinking water improved tibia mass of broilers through the alterations of intestinal barrier and microbiota

        Zhang Huaiyong,Guo Yujun,Wang Ziyang,Wang Yongshuai,Chen Bo,Du Pengfei,Zhang Xiangli,Huang Yanqun,Li Peng,Michiels Joris,Chen Wen 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.6

        Objective: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied. Methods: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d. Results: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker. Conclusion: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation. Objective: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied.Methods: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d.Results: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker.Conclusion: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation.

      • KCI등재

        Risk assessment of aviation DC series arc based on reconstructed CBAM‑CNN

        Haoqi Yang,Cong Gao,Hongjuan Ge,Yiqin Sang,Yongshuai Wang 전력전자학회 2023 JOURNAL OF POWER ELECTRONICS Vol.23 No.5

        The hazards of sustained arc and un-sustained arc are different. However, during the stage of arc development, there is a lack of effective methods to identify them, which is not conducive to the timely accurate assessment of arc risk. Therefore, this paper proposes a risk assessment method for aviation DC series arc based on a reconstructed CBAM-CNN. First, in the process of generating the feature set, a feature evaluation function is defined to screen the features. Then the existing convolution block attention module (CBAM) is improved by adding a reshaped layer and redefining spatial attention, which results in the reconstructed CBAM-CNN. Finally, the reconstructed CBAM-CNN takes the feature set as its input and output arc risk assessment results on the basis of enhancing the attention of important features. The validity of the reconstructed CBAM-CNN method is verified on an aviation DC arc generation platform. It is found that the proposed method has a higher training efficiency and evaluation accuracy than the CNN method and CBAM-CNN method. In addition, the reconstructed CBAM-CNN involves fewer parameters to be measured, which can reduce its dependence on computing resources.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼