RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Application of frictional sliding fuse in infilled frames, fuse adjustment and influencing parameters

        M. Mohammadi-Gh,V. Akrami 국제구조공학회 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.36 No.6

        An experimental investigation is conducted here to study the effects of applying frictional sliding fuses (FSF) in concrete infilled steel frames. Firstly, the influences of some parameters on the behavior of the sliding fuse are studied: Methods of adjusting the FSF for a certain sliding strength are explained and influences of time duration, welding and corrosion are investigated as well. Based on the results, time duration does not significantly affect the FSF, however influences of welding and corrosion of the constitutive plates are substantial. Then, the results of testing two 1/3 scale single-storey single-bay concrete infilled steel frames having FSF are presented. The specimens were similar, except for different regulations of their fuses, tested by displacement controlled cyclic loading. The results demonstrate that applying FSF improves infill behaviors in both perpendicular directions. The infilled frames with FSF have more appropriate hysteresis cycles, higher ductility, much lower deteriorations in strength and stiffness in comparison with regular ones. Consequently, the infills, provided with FSF, can be regarded as an engineered element, however, special consideration should be taken into the affecting parameters of their fuses.

      • SCIESCOPUS

        Application of frictional sliding fuse in infilled frames, fuse adjustment and influencing parameters

        Mohammadi-Gh, M.,Akrami, V. Techno-Press 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.36 No.6

        An experimental investigation is conducted here to study the effects of applying frictional sliding fuses (FSF) in concrete infilled steel frames. Firstly, the influences of some parameters on the behavior of the sliding fuse are studied: Methods of adjusting the FSF for a certain sliding strength are explained and influences of time duration, welding and corrosion are investigated as well. Based on the results, time duration does not significantly affect the FSF, however influences of welding and corrosion of the constitutive plates are substantial. Then, the results of testing two 1/3 scale single-storey single-bay concrete infilled steel frames having FSF are presented. The specimens were similar, except for different regulations of their fuses, tested by displacement controlled cyclic loading. The results demonstrate that applying FSF improves infill behaviors in both perpendicular directions. The infilled frames with FSF have more appropriate hysteresis cycles, higher ductility, much lower deteriorations in strength and stiffness in comparison with regular ones. Consequently, the infills, provided with FSF, can be regarded as an engineered element, however, special consideration should be taken into the affecting parameters of their fuses.

      • Numerical investigation on the flexural links of eccentrically braced frames with web openings

        S. Erfani,A. Vakili,V. Akrami 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.39 No.2

        Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software “Abaqus” and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼