RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Hydrogel microrheology near the liquid-solid transition

        Larsen, Travis,Schultz, Kelly,Furst, Eric M. The Korean Society of Rheology 2008 Korea-Australia rheology journal Vol.20 No.3

        Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

      • KCI등재후보

        Hydrogel microrheology near the liquid-solid transition

        Travis Larsen,Kelly Schultz,Eric M. Furst 한국유변학회 2008 Korea-Australia rheology journal Vol.20 No.3

        Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼