RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond. Part 1: Surface water and bottom sediments

        Panov Aleksei,Trapeznikov Alexander,Trapeznikova Vera,Korzhavin Alexander 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.8

        The results of radioecological monitoring of the cooling pond Beloyarsk NPP (Russia) have been presented. The influence of waste technological waters of thermal and fast NPP reactors on the content of artificial radionuclides in surface waters and bottom sediments of the Beloyarsk reservoir has been studied. The long-term dynamics of the specific activity of 60Co, 90Sr, 137Cs and 3 H in the main components of the freshwater ecosystem at different distances from the source of radionuclide discharge has been estimated. Critical radionuclides (60Co and 137Cs), routes of their entry and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at Beloyarsk NPP, based on fast reactors, has a much smaller effect on the flow of artificial radionuclides into the freshwater ecosystem of the reservoir. During the entire period of monitoring studies, the decrease in the specific activity of radionuclides from NPP origin in surface waters was 4.3e74.5 times, in bottom sediments 10e505 times. The maximum discharge of artificial radionuclides into the reservoir was noted during the period of restoration and decontamination work aimed at eliminating emergencies at the AMB thermal reactors of the first stage of the Beloyarsk NPP

      • KCI등재

        Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond: Part II, Macrophytes and fish

        Panov Aleksei,Trapeznikov Alexander,Trapeznikova Vera,Korzhavin Alexander 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.2

        The influence of waste technological waters of thermal and fast reactors of Beloyarsk NPP (Russia) on the accumulation of 60Co, 90Sr and 137Cs in macrophytes and ichthyofauna of the cooling pond has been studied. Critical radionuclides, routes of their entry into the ecosystem and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at the Beloyarsk NPP, based on fast reactors, has a much smaller effect on the release of artificial radionuclides into the environment. Therefore, during the entire period of monitoring studies (1976e2019), the decrease in the specific activity of radionuclides of NPP origin in macrophytes was 13e25800 times, in ichthyofauna 1.5-44.5 times. The maximum discharge of artificial radionuclides into the Beloyarsk reservoir was noted during the period of restoration and decontamination work aimed at eliminating the emergencies at the AMB reactors of NPP. The factors influencing the accumulation of artificial radionuclides in the components of the freshwater ecosystem of the Beloyarsk cooling pond have been determined, including: the physicochemical nature of radioisotopes, their concentration in surface water, the temperature of the aquatic environment, the trophicity of the reservoir, the species of hydrobionts.

      • SCIESCOPUSKCI등재

        Analysis of ultra-low radionuclide concentrations in water samples with baromembrane method

        Vasyanovich, Maxim,Ekidin, Aleksey,Trapeznikov, Alexander,Plataev, Anatoly Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.1

        This work demonstrates the use of baromembrane method based on reverse osmosis (RO) process. The method is realized on mobile complex, which allows to concentrate and determine ultra-low activity of radionuclides in water cooling ponds of Russian nuclear fuel cycle enterprises. The existence level of radionuclide background creates difficult conditions for identification the contribution of liquid discharges enterprise, as standard monitoring methods have a very high detection level for radionuclides. Traditional methods for determining the background radionuclides concentrations require the selection of at least 500 liters (l) of water, followed by their evaporation to form a dry residue. This procedure with RO membranes requires at least 5 days. It is possible to reduce the time and energy spent on evaporation of hundreds of water liters by pre-concentrating radionuclides in a smaller sample volume with baromembrane method. This approach allows preliminary concentration of water samples from 500 l volume till 20 l volume during several hours. This approach is universal for the concentration of dissolved salts of any heavy metals, other organic compounds and allows the preparation of water countable samples in much shorter time compared to the traditional evaporation method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼