RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nutrient recycling of source-separated human faeces using biochar immobilized indigenous psychrotrophic bacteria for sustaining the agroecosystems of north-western Himalaya

        Borker Shruti Sinai,Thakur Aman,Pandey Krishna Kanta,Sharma Pallavi,Manyapu Vivek,Khatri Abhishek,Kumar Rakshak 한국응용생명화학회 2024 Applied Biological Chemistry (Appl Biol Chem) Vol.67 No.-

        The Himalayan composting toilets (CTs) offer a sustainable solution for converting human faeces (HF) into com post, supplementing the low-fertile land of the region. However, CTs face challenges such as delayed composting processes (6–8 months), increased heavy metal content, and foul odour. Therefore, the current study evaluated biochar-amended psychrotrophic bacteria for HF degradation under low-temperature conditions (10 ± 2 °C). Out of 153 psychrotrophic bacteria isolated from HF compost, 17 bacterial strains were selected based on highest and two or more hydrolytic activities. Furthermore, considering the isolation source, bacterial strains were exam ined for haemolytic activity, biofilm formation, cytotoxicity and seed germination assay. In total, 14 potential strains belonging to Pseudomonas, Microbacterium, Arthrobacter, Streptomyces, Glutamicibacter, Rhodococcus, Serratia, Exig uobacterium, and Jeotgalicoccus genera were considered safe for both human handling and plants. The composting process was conducted in modified plastic drums at 10 ± 2 °C for 90 days through two treatments: Treatment 1 (T1) involving HF, non-immobilized biochar and cocopeat, and Treatment 2 (T2) involving HF, consortium-immobilized biochar and cocopeat. The consortium-immobilized biochar (T2) degraded HF within 90 days with hemicellulose and cellulose degradation ratios of 73.9% and 62.4%, respectively (p ≤ 0.05). The compost maturation indices like C/N ratio (16.5 ± 1.85), total nitrogen (2.66 ± 0.07), total phosphate (0.4 ± 0.005), total potassium (1.8 ± 0.05) also improved in T2 treatment (p ≤ 0.05). Additionally, T2 was more effective in achieving safe levels of faecal coliforms (< 1000 MPN g−1) and reducing heavy metal content compared to T1. 16S rRNA amplicon-based analysis demonstrated an enhancement of bacterial community diversity in T2, with the presence of Rhodococcus, Pseudomonas, Arthro bacter, and Streptomyces at the end of the composting period promoting HF degradation. Furthermore, T2-fertilized soil showed a germination index (121 ± 0.4, p ≤ 0.05) and stimulated root, shoot and yield by 110%, 45.2%, and 288%, respectively, in pea (Pisum sativum var. AS-10) compared to T1 (49.6%, 19%, and 5.8%, respectively) (p ≤ 0.05). In con clusion, the developed biochar-based formulation proved effective in degrading HF at low temperatures, mitigating foul odours, reducing heavy metals, and enhancing the agronomic value of the final compost. This study presents a promising approach for the sustainable management of HF that can supplement the non-nutritive soil of high altitude regions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼