RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Kinematically Aligned Total Knee Arthroplasty with Patient-Specific Instrument

        김광균,Stephen M. Howell,원예연 연세대학교의과대학 2020 Yonsei medical journal Vol.61 No.3

        Kinematically aligned total knee arthroplasty (TKA) is a new alignment technique. Kinematic alignment corrects arthritic deformityto the patient’s constitutional alignment in order to position the femoral and tibial components, as well as to restore theknee’s natural tibial-femoral articular surface, alignment, and natural laxity. Kinematic knee motion moves around a single flexion-extension axis of the distal femur, passing through the center of cylindrically shaped posterior femoral condyles. Since it canbe difficult to locate cylindrical axis with conventional instrument, patient-specific instrument (PSI) is used to align the kinematicaxes. PSI was recently introduced as a new technology with the goal of improving the accuracy of operative technique, avoidingpractical issues related to the complexity of navigation and robotic system, such as the costs and higher number of personnel required. There are several limitations to implement the kinematically aligned TKA with the implant for mechanical alignment. Therefore, it is important to design an implant with the optimal shape for restoring natural knee kinematics that might improvepatient-reported satisfaction and function.

      • Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy

        Bertucci, Alessandro,Kim, Kang-Hoon,Kang, Jinyoung,Zuidema, Jonathan M.,Lee, Seo Hyeon,Kwon, Ester J.,Kim, Dokyoung,Howell, Stephen B.,Ricci, Francesco,Ruoslahti, Erkki,Jang, Hyeung-Jin,Sailor, Michae American Chemical Society 2019 ACS APPLIED MATERIALS & INTERFACES Vol.11 No.27

        <P>Silencing of aberrantly expressed microRNAs (miRNAs or miRs) has emerged as one of the strategies for molecular targeted cancer therapeutics. In particular, miR-21 is an oncogenic miRNA overexpressed in many tumors, including ovarian cancer. To achieve efficient administration of anti-miR therapeutics, delivery systems are needed that can ensure local accumulation in the tumor environment, low systemic toxicity, and reduced adverse side effects. In order to develop an improved anti-miR therapeutic agent for the treatment of ovarian cancer, a nanoformulation is engineered that leverages biodegradable porous silicon nanoparticles (pSiNPs) encapsulating an anti-miR-21 locked nucleic acid payload and displaying a tumor-homing peptide for targeted distribution. Targeting efficacy, miR-21 silencing, and anticancer activity are optimized in vitro on a panel of ovarian cancer cell lines, and a formulation of anti-miR-21 in a pSiNP displaying the targeting peptide CGKRK is identified for in vivo evaluation. When this nanoparticulate agent is delivered to mice bearing tumor xenografts, a substantial inhibition of tumor growth is achieved through silencing of miR-21. This study presents the first successful application of tumor-targeted anti-miR porous silicon nanoparticles for the treatment of ovarian cancer in a mouse xenograft model.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼