RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Nanoporous Carbohydrate Metal–Organic Frameworks

        Forgan, Ross S.,Smaldone, Ronald A.,Gassensmith, Jeremiah J.,Furukawa, Hiroyasu,Cordes, David B.,Li, Qiaowei,Wilmer, Christopher E.,Botros, Youssry Y.,Snurr, Randall Q.,Slawin, Alexandra M. Z.,Stoddar American Chemical Society 2012 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.134 No.1

        <P>The binding of alkali and alkaline earth metal cations by macrocyclic and diazamacrobicyclic polyethers, composed of ordered arrays of hard oxygen (and nitrogen) donor atoms, underpinned the development of host–guest supramolecular chemistry in the 1970s and 1980s. The arrangement of −OCCO– and −OCCN– chelating units in these preorganized receptors, including, but not limited to, crown ethers and cryptands, is responsible for the very high binding constants observed for their complexes with Group IA and IIA cations. The cyclodextrins (CDs), cyclic oligosaccharides derived microbiologically from starch, also display this −OCCO– bidentate motif on both their primary and secondary faces. The self-assembly, in aqueous alcohol, of infinite networks of extended structures, which have been termed CD-MOFs, wherein γ-cyclodextrin (γ-CD) is linked by coordination to Group IA and IIA metal cations to form metal–organic frameworks (MOFs), is reported. CD-MOF-1 and CD-MOF-2, prepared on the gram-scale from KOH and RbOH, respectively, form body-centered cubic arrangements of (γ-CD)<SUB>6</SUB> cubes linked by eight-coordinate alkali metal cations. These cubic CD-MOFs are (i) stable to the removal of solvents, (ii) permanently porous, with surface areas of ∼1200 m<SUP>2</SUP> g<SUP>–1</SUP>, and (iii) capable of storing gases and small molecules within their pores. The fact that the −OCCO– moieties of γ-CD are not prearranged in a manner conducive to encapsulating single metal cations has led to our isolating other infinite frameworks, with different topologies, from salts of Na<SUP>+</SUP>, Cs<SUP>+</SUP>, and Sr<SUP>2+</SUP>. This lack of preorganization is expressed emphatically in the case of Cs<SUP>+</SUP>, where two polymorphs assemble under identical conditions. CD-MOF-3 has the cubic topology observed for CD-MOFs 1 and 2, while CD-MOF-4 displays a channel structure wherein γ-CD tori are perfectly stacked in one dimension in a manner reminiscent of the structures of some γ-CD solvates, but with added crystal stability imparted by metal–ion coordination. These new MOFs demonstrate that the CDs can indeed function as ligands for alkali and alkaline earth metal cations in a manner similar to that found with crown ethers. These inexpensive, green, nanoporous materials exhibit absorption properties which make them realistic candidates for commercial development, not least of all because edible derivatives, fit for human consumption, can be prepared entirely from food-grade ingredients.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/2012/jacsat.2012.134.issue-1/ja208224f/production/images/medium/ja-2011-08224f_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ja208224f'>ACS Electronic Supporting Info</A></P>

      • SCISCIESCOPUS

        Polyporous Metal-Coordination Frameworks

        Gassensmith, Jeremiah J.,Smaldone, Ronald A.,Forgan, Ross S.,Wilmer, Christopher E.,Cordes, David B.,Botros, Youssry Y.,Slawin, Alexandra M. Z.,Snurr, Randall Q.,Stoddart, J. Fraser American Chemical Society 2012 ORGANIC LETTERS Vol.14 No.6

        <P>Starting from a chiral building block?α-cyclodextrin?and rubidium salts, the crystallization of a complex of chiral helices, which constitute a “green” porous coordination polymer, has been realized. Cyclodextrin molecules coordinated by rubidium ions form porous, infinitely long left-handed helical channels, interdigitated with each other. A theoretical examination of the potential of this new material to act as a medium for chiral separation is presented.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/orlef7/2012/orlef7.2012.14.issue-6/ol300199a/production/images/medium/ol-2012-00199a_0006.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ol300199a'>ACS Electronic Supporting Info</A></P>

      • Positive Cooperativity in the Template-Directed Synthesis of Monodisperse Macromolecules

        Belowich, Matthew E.,Valente, Cory,Smaldone, Ronald A.,Friedman, Douglas C.,Thiel, Johannes,Cronin, Leroy,Stoddart, J. Fraser American Chemical Society 2012 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.134 No.11

        <P>Two series of oligorotaxanes R and R' that contain -CH(2)NH(2)(+)CH(2)- recognition sites in their dumbbell components have been synthesized employing template-directed protocols. [24]Crown-8 rings self-assemble by a clipping strategy around each and every recognition site using equimolar amounts of 2,6-pyridinedicarboxaldehyde and tetraethyleneglycol bis(2-aminophenyl) ether to efficiently provide up to a [20]rotaxane. In the R series, the -NH(2)(+)- recognition sites are separated by trismethylene bridges, whereas in the R' series the spacers are p-phenylene linkers. The underpinning idea here is that in the former series, the recognition sites are strategically positioned 3.5 ? apart from one another so as to facilitate efficient [ππ] stacking between the aromatic residues in contiguous rings in the rotaxanes and consequently, a discrete rigid and rod-like conformation is realized; these noncovalent interactions are absent in the latter series rendering them conformationally flexible/nondiscrete. Although in the R' series, the [3]-, [4]-, [8]-, and [12]rotaxanes were isolated after reaction times of <5-30 min in yields of 72-85%, in the R series, the [3]-, [4]-, [5]-, [8]-, [12]-, [16]-, and [20]rotaxanes were isolated in <5 min to 14 h in 88-98% yields. It follows that while in the R' series the higher order oligorotaxanes are formed in lower yields more rapidly, in the R series, the higher order oligorotaxanes are formed in higher yields more slowly. In the R series, the high percentage yields are sustained throughout, despite the fact that up to 39 components are participating in the template-directed self-assembly process. Simple arithmetic reveals that the conversion efficiency for each imine bond formation peaks at 99.9% in the R series and 99.3% in the R' series. This maintenance of reaction efficiency in the R series can be ascribed to positive cooperativity, that is, when one ring is formed it aids and abets the formation of subsequent rings presumably because of stabilizing extended [ππ] stacking interactions between the arene units. Experiments have been performed wherein the dumbbell is starved of the macrocyclic components, and up to five times more of the fully saturated rotaxane is formed than is predicted based on a purely statistical outcome, providing a clear indication that positive cooperativity is operative. Moreover, it would appear that as the R series is traversed from the [3]- to the [4]- to the [5]rotaxane, the cooperativity becomes increasingly positive. This kind of cooperative behavior is not observed for the analogous oligorotaxanes in the R' series. The conventional bevy of analytical techniques (e.g., HR-MS (ESI) and both (1)H and (13)C NMR spectroscopy) help establish the fact that all the oligorotaxanes are pure and monodisperse. Evidence of efficient [ππ] stacking between contiguous arene units in the rings in the R series is revealed by (1)H NMR spectroscopy. Ion-mobility mass spectrometry performed on the R and R' series yielded the collisional cross sections (CCSs), confirming the rigidity of the R oligorotaxanes and the flexibility of the R' ones. The extended [ππ] stacking interactions are found to be present in the solid-state structures of the [3]- and [4]rotaxanes in the R series and also on the basis of molecular mechanics calculations performed on the entire series of oligomers. The collective data presented herein supports our original design in that the extended [ππ] stacking between contiguous arene units in the rings of the R series of oligorotaxanes facilitate an essentially rigid rod-like conformation with evidence that positive cooperativity improves the efficiency of their formation. This situation stands in sharp contrast to the conformationally flexible R' series where the oligorotaxanes form with no cooperativity.</P>

      • Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework

        Gassensmith, Jeremiah J.,Furukawa, Hiroyasu,Smaldone, Ronald A.,Forgan, Ross S.,Botros, Youssry Y.,Yaghi, Omar M.,Stoddart, J. Fraser American Chemical Society 2011 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.133 No.39

        <P>The efficient capture and storage of gaseous CO<SUB>2</SUB> is a pressing environmental problem. Although porous metal–organic frameworks (MOFs) have been shown to be very effective at adsorbing CO<SUB>2</SUB> selectively by dint of dipole–quadruple interactions and/or ligation to open metal sites, the gas is not usually trapped covalently. Furthermore, the vast majority of these MOFs are fabricated from nonrenewable materials, often in the presence of harmful solvents, most of which are derived from petrochemical sources. Herein we report the highly selective adsorption of CO<SUB>2</SUB> by CD-MOF-2, a recently described green MOF consisting of the renewable cyclic oligosaccharide γ-cyclodextrin and RbOH, by what is believed to be reversible carbon fixation involving carbonate formation and decomposition at room temperature. The process was monitored by solid-state <SUP>13</SUP>C NMR spectroscopy as well as colorimetrically after a pH indicator was incorporated into CD-MOF-2 to signal the formation of carbonic acid functions within the nanoporous extended framework.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/2011/jacsat.2011.133.issue-39/ja206525x/production/images/medium/ja-2011-06525x_0003.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ja206525x'>ACS Electronic Supporting Info</A></P>

      • Donor–acceptor molecular figures-of-eight

        Boyle, Megan M.,Forgan, Ross S.,Friedman, Douglas C.,Gassensmith, Jeremiah J.,Smaldone, Ronald A.,Stoddart, J. Fraser,Sauvage, Jean-Pierre Royal Society of Chemistry 2011 Chemical communications Vol.47 No.43

        <P>The intermolecular template-directed synthesis, separation and characterisation of two constitutional isomers that are self-complexing donor–acceptor [1]rotaxanes has been achieved by click chemistry, starting from a π-electron deficient tetracationic cyclophane containing two azide functions and a π-electron rich 1,5-dioxynaphthalene-containing polyether chain terminated by propargyl groups.</P> <P>Graphic Abstract</P><P>The intermolecular template-directed synthesis, separation and characterisation of two constitutional isomers that are self-complexing donor–acceptor [1]rotaxanes has been achieved by click chemistry. <IMG SRC='http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/image/GA?id=c1cc15333a'> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼