RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Preparation and Characterization of a pH-responsive Polymer that Interacts with Microbial Transglutaminase during Affinity Precipitation

        Sipeng Li,Jialing Chen,Xuanjun Zhang,Zhaoyang Ding,Xuejun Cao 한국생물공학회 2018 Biotechnology and Bioprocess Engineering Vol.23 No.1

        Microbial transglutaminase (MTG) has been widely used in the food and pharmaceuticals industries. In this study, MTG was purified using affinity precipitation with an affinity polymer (PMMDN-T), which was synthesized using a pH-responsive polymer (PMMDN) coupled with L-thyroxin as an affinity ligand. Interactions between MTG and PMMDN-T were investigated using turbidimetric titration, zeta potential measurements, and low-field nuclear magnetic resonance (LF-NMR). We found different behaviors, architectures, and phase states of pH-dependent interactions between MTG and PMMDN-T interactions. Binding energetics between MTG and PMMDN-T were determined by isothermal titration calorimetry (ITC). The isoelectric point (pI) of the affinity polymer was 4.65 and was recovered with 96.7% efficiency after recycling the polymer three times. The optimal adsorption condition was 0.02 mol/L phosphate buffer (pH 6.0) with 1.0 mol/L NaCl at 30.0°C and a ligand density of 50.0 μmol/g. The maximum elution recoveries of total MTG were 98.44% (protein) with 92.19% (activity) using 0.02 mol/L pH 10.0 Gly-NaOH as the eluent.

      • KCI등재

        Study on heat transfer characteristics and structural parameter effects of heat pipe with fins based on MOOSE platform

        Chen Xiaoquan,Du Peng,Tian Rui,Li Zhuoyao,Lian Hongkun,Zhuang Kun,Wang Sipeng 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.1

        The space reactor is the primary energy supply for future space vehicles and space stations. The radiator is one of the essential parts of a space reactor. Therefore, the research on radiators can improve the heat dissipation power, reduce the quality of radiators, and make the space reactor smaller. Based on MOOSE multi-physics numerical calculation platform, a simulation program for the combination of heat pipe and fin at the end of heat pipe radiator is developed. It is verified that the calculation result of this program is accurate and the calculation speed is fast. Analyze the heat transfer characteristics of the combination with heat pipe and fin, and obtain its internal temperature field. Based on the calculation results, the influence of structural parameters on the heat dissipation power is analyzed. The results show that when the fin width is 0.25 m, fin thickness is 0.002 m, condensing section length is 0.5425 m and heat pipe radius is 0.014 m, the power-mass ratio is the highest. When the temperature is 700Ke900K, the heat dissipation power increases 41.12% for every 100K increase in the operating temperature. Smaller fin width and thinner fin thickness can improve the power-mass ratio and reduce the radiator quality.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼