RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Leakage Magnetic Field Suppression Using Dual-Transmitter Topology in EV Wireless Charging

        Zhu, Guodong,Gao, Dawei,Lin, Shulin The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.3

        This paper proposes an active leakage magnetic field (LMF) suppression scheme, which uses the dual-transmitter (DT) topology, for EV wireless charging systems (EVWCS). The two transmitter coils are coplanar, concentric and driven by separate inverters. The LMF components generated by the three coils cancel each other out to reduce the total field strength. This paper gives a detailed theoretical analysis on the operating principles of the proposed scheme. Finite element analysis is used to simulate the LMF distribution patterns. Experimental results show that when there is no coil misalignment, 97% of the LMF strength can be suppressed in a 1kW prototype. These results also show that the impact on efficiency is small. The trade-off between LMF suppression and efficiency is revealed, and a control strategy to balance these two objectives is presented.

      • KCI등재

        Leakage Magnetic Field Suppression Using Dual-Transmitter Topology in EV Wireless Charging

        Guodong Zhu,Dawei Gao,Shulin Lin 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.3

        This paper proposes an active leakage magnetic field (LMF) suppression scheme, which uses the dual-transmitter (DT) topology, for EV wireless charging systems (EVWCS). The two transmitter coils are coplanar, concentric and driven by separate inverters. The LMF components generated by the three coils cancel each other out to reduce the total field strength. This paper gives a detailed theoretical analysis on the operating principles of the proposed scheme. Finite element analysis is used to simulate the LMF distribution patterns. Experimental results show that when there is no coil misalignment, 97% of the LMF strength can be suppressed in a 1kW prototype. These results also show that the impact on efficiency is small. The trade-off between LMF suppression and efficiency is revealed, and a control strategy to balance these two objectives is presented.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼