RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        The Incremental Cost Matrix Procedure for Locating Repair Service Centers in Multinational Reverse Logistics

        Hsin Min Chen,Chih Kuang Hsieh,Ming Cheng Wu,Shin Wei Luo 대한산업공학회 2009 Industrial Engineeering & Management Systems Vol.8 No.3

        This study provides a heuristic algorithm to solve the locating problem of repair service centers (RSCs). To enhance the customer service level with more satisfaction and quicker responsiveness, the locating problem of RSCs has become one of the important issues in reverse supply chain management. This problem is formulated as a zero-one mixed integer programming in which an exiting distributor will be considered to be an un-capacitated repair service center for the objective of cost-minimizing. Since logistical costs are highly interrelated with the multinational location of distributors and RSCs, the fixed cost for setting a repair service center, variable cost, transportation cost, and exchange rates are considered in this study. Recognizing the selection of un-capacitated RSCs’ locations is a combinatorial optimization problem and is a zero-one mixed integer programming with NP-hard complexity, we provide a heuristic algorithm named as incremental cost matrix procedure (ICMP) to simplify the solving procedure. By using the concise and structural cost matrix, ICMP can efficiently screen the potential location with cost advantage and effectively decide which distributor should be a RSC. Results obtained from the numerical experiments conducted in small scale problem have shown the fact that ICMP is an effective and efficient heuristic algorithm for solving the RSCs locating problem. In the future, using the extended ICMP to solve problems with larger industrial scale or problems with congestion effects caused by the variation of customer demand and the restriction of the RSC capacity is worth a further investigation.

      • SCOPUSKCI등재

        The Incremental Cost Matrix Procedure for Locating Repair Service Centers in Multinational Reverse Logistics

        Chen, Hsin Min,Hsieh, Chih Kuang,Wu, Ming Cheng,Luo, Shin Wei Korean Institute of Industrial Engineers 2009 Industrial Engineeering & Management Systems Vol.8 No.3

        This study provides a heuristic algorithm to solve the locating problem of repair service centers (RSCs). To enhance the customer service level with more satisfaction and quicker responsiveness, the locating problem of RSCs has become one of the important issues in reverse supply chain management. This problem is formulated as a zero-one mixed integer programming in which an exiting distributor will be considered to be an un-capacitated repair service center for the objective of cost-minimizing. Since logistical costs are highly interrelated with the multinational location of distributors and RSCs, the fixed cost for setting a repair service center, variable cost, transportation cost, and exchange rates are considered in this study. Recognizing the selection of un-capacitated RSCs' locations is a combinatorial optimization problem and is a zero-one mixed integer programming with NP-hard complexity, we provide a heuristic algorithm named as incremental cost matrix procedure (ICMP) to simplify the solving procedure. By using the concise and structural cost matrix, ICMP can efficiently screen the potential location with cost advantage and effectively decide which distributor should be a RSC. Results obtained from the numerical experiments conducted in small scale problem have shown the fact that ICMP is an effective and efficient heuristic algorithm for solving the RSCs locating problem. In the future, using the extended ICMP to solve problems with larger industrial scale or problems with congestion effects caused by the variation of customer demand and the restriction of the RSC capacity is worth a further investigation.

      • Mathematical modeling of a six-axis force/moment sensor

        Chao Yuan,Gang Xue,Mei-Zhi Yang,Lu-Ping Luo,Kyoo-Sik Shin,Xue-Wei Zhang 제어로봇시스템학회 2015 제어로봇시스템학회 국제학술대회 논문집 Vol.2015 No.10

        In controlling the robot interacting with the external environment, an important role is played by the force/moment sensors. To design a good force sensor, we need to make a good model first. This paper presents a systematic modeling method of one type of force/moment sensor. A model of a previously designed sensor has been built on the basis of static and kinematic equations and a block form of the strain compliance matrix is obtained using the model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼