RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Improved Reactive Power Sharing for Parallel-operated Inverters in Islanded Microgrids

        Issa, Walid,Sharkh, Suleiman,Mallick, Tapas,Abusara, Mohammad The Korean Institute of Power Electronics 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.3

        The unequal impedances of the interconnecting cables between paralleled inverters in the island mode of microgrids cause inaccurate reactive power sharing when the traditional droop control is used. Many studies in the literature adopt low speed communications between the inverters and the central control unit to overcome this problem. However, the losses of this communication link can be very detrimental to the performance of the controller. This paper proposes an improved reactive power-sharing control method. It employs infrequent measurements of the voltage at the point of common coupling (PCC) to estimate the output impedance between the inverters and the PCC and then readjust the voltage droop controller gains accordingly. The controller then reverts to being a traditional droop controller using the newly calculated gains. This increases the immunity of the controller against any losses in the communication links between the central control unit and the inverters. The capability of the proposed control method has been demonstrated by simulation and experimental results using a laboratory scale microgrid.

      • KCI등재

        Improved Reactive Power Sharing for Parallel-operated Inverters in Islanded Microgrids

        Walid Issa,Suleiman Sharkh,Tapas Mallick,Mohammad Abusara 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.3

        The unequal impedances of the interconnecting cables between paralleled inverters in the island mode of microgrids cause inaccurate reactive power sharing when the traditional droop control is used. Many studies in the literature adopt low speed communications between the inverters and the central control unit to overcome this problem. However, the losses of this communication link can be very detrimental to the performance of the controller. This paper proposes an improved reactive power-sharing control method. It employs infrequent measurements of the voltage at the point of common coupling (PCC) to estimate the output impedance between the inverters and the PCC and then readjust the voltage droop controller gains accordingly. The controller then reverts to being a traditional droop controller using the newly calculated gains. This increases the immunity of the controller against any losses in the communication links between the central control unit and the inverters. The capability of the proposed control method has been demonstrated by simulation and experimental results using a laboratory scale microgrid.

      • SCIESCOPUSKCI등재

        Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

        Abusara, Mohammad A.,Sharkh, Suleiman M.,Zanchetta, Pericle The Korean Institute of Power Electronics 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.2

        Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.

      • KCI등재

        Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

        Mohammad A. Abusara,Suleiman M. Sharkh,Pericle Zanchetta 전력전자학회 2015 JOURNAL OF POWER ELECTRONICS Vol.15 No.2

        Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼