RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Photosynthetic Performances of Temperate Sargassum and Kelp Species Growing in the Same Habitat

        Murakami, Hiroshige,Serisawa, Yukihiko,Kurashima, Akira,Yokohama, Yasutsugu The Korean Society of Phycology 2004 ALGAE Vol.19 No.3

        Characteristics of photosynthesis-light and photosynthesis-temperature relationships were seasonally compared among 4 species, two temperate Sargassurn (S. ringgoldianum and S. spathulophyllum) and two temperate kelp (Ecklonia cava and Eisenia bicyclis), growing in the same habitat in Oura Bay, Shimoda, central Japan. The photosynthesis-irradiance (P-I) curve of each species at the in situ temperature and the photosynthesis-temperature (P-T) curve at near saturation irradiance (400μmol·m^(-2)·s^(-1)) were determined by using differential gas-volumeters. Maximum photosynthetic rates (Prnax) for P-I curves of the two Sargassurn species were higher from summer to autumn than from winter to spring, while those of the two kelp species showed little difference among seasons. Net photosynthetic rates (Pn) at 100-400μmol·m^(-2)·s^(-1) of the Sargassurn species were higher than those of the kelp species in autumn, spring and summer, while in winter the rates were about the same between the Sargassurn and kelp species. Among seasons, the light saturation index (1k) values, dark respiration rates and light compensation points of Sargassurn species differed more than those of kelp species. Optimum temperature for P-T curves of Sargassurn species was 29℃ and that of kelp species was 27℃ in summer, while in winter the former was 27℃ and the latter was 25℃. Pn at 400 μmol·m^(-2)·s^(-1) at 10-33℃ of Sargassurn species were considerably higher than those of kelp species from spring to summer, while from autumn to winter the rates at 5-27℃ were about the same between the two. At supra-optimum temperatures, Pn of kelp species decreased more sharply than those of Sargassurn species in each season. These facts indicate that the two temperate Sargassurn species have a higher potential photosynthetic performance under warmer conditions than the two temperate kelp species even though they grow in the same habitat.

      • SCIESCOPUSKCI등재

        Effects of Deep Seawater on the Growth of a Green Alga, Ulva sp.(Ulvophyceae, Chlorophyta)

        Matsuyama, Kazuyo,Serisawa, Yukihiko,Nakashima, Toshimitsu The Korean Society of Phycology 2003 ALGAE Vol.18 No.2

        In order to examine the effects of deep seawater (mesopelagic water in the broad sense) on the growth of macroalgae, the growth and nutrient uptake (nitrate and phosphate) of Ulva sp. (Ulvophyceae, Chlorophyta) were investigated by cultivation in deep seawater (taken from 687 m depth at Yaizu, central Japan, in August 2001), surface seawater (taken from 24 m depth), and a combination of the two. Culture experiments were carried out in a continuous water supply system and an intermittent water supply system, in which aerated 500-mL flasks with 4 discs of Ulva sp. (cut sections of ca. 2 $cm_2$) were cultured at 20$^{\circ}C$ water temperature, 100 $\mu$mol photons $m^{-2}{\cdot}s^{-1}$ light intensity, and a 14:10 light:dark cycle. Nutrient uptake by Ulva sp. was high in all seawater media in both culture systems. The frond area, dry weight, chlorophyll a content, dry weight per unit area, and chlorophyll a content per unit area of Ulva sp. at the end of the experimental period were the highest in deep seawater and the lowest in surface seawater in both culture systems. These values, except for dry weight per unit area and chlorophyll a content per unit area, for each seawater media in the intermittent water supply system were higher than those in the continuous water supply system. We conclude that not only deep seawater as the culture medium but also the seawater supply system is important for effective cultivation of macroalgae.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼