RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

        Santo, Vitor E.,Prieto, Susana,Testera, Ana M.,Arias, Francisco J.,Alonso, Matilde,Mano, Joao F.,Rodriguez-Cabello, Jose Carlos Techno-Press 2015 Biomaterials and biomedical engineering Vol.2 No.1

        A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

      • Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

        Santo, Vitor E.,Prieto, Susana,Testera, Ana M.,Arias, Francisco J.,Alonso, Matilde,Mano, Joao F.,Rodriguez-Cabello, Jose Carlos Techno-Press 2015 Biomaterials and Biomechanics in Bioengineering Vol.2 No.1

        A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

      • KCI등재

        Wind turbine maximum power point tracking control based on unsupervised neural networks

        Muñoz-Palomeque Eduardo,Sierra-García J Enrique,Santos Matilde 한국CDE학회 2023 Journal of computational design and engineering Vol.10 No.1

        The main control goal of a wind turbine (WT) is to produce the maximum energy in any operating region. When the wind speed is under its rated value, the control must aim at tracking the maximum power point of the best power curve for a specific WT. This is challenging due to the non-linear characteristics of the system and the environmental disturbances it is subjected to. Direct speed control (DSC) is one of the main techniques applied to address this problem. In this strategy, it is necessary to design a speed controller to adjust the generator torque so to follow the optimum generator speed. In this work, we improve the DSC by implementing this speed controller with a radial basis function neural network (NN). An unsupervised learning algorithm is designed to tune the weights of the NN so it learns the control law that minimizes the generator speed error. With this proposed unsupervised neural control methodology, the electromagnetic torque that allows the optimal power extraction is obtained, and thus the best power coefficient (${C}_\mathrm{p}$) values. The proposal is tested on the OpenFAST non-linear model of the National Renewable Energy Laboratory 1.5 MW WT. Simulation results prove the good performance of this neuro-control approach as it maintains the WT variables into the appropriate range and tracks the rated operation values. It has been compared with the controller included in OpenFAST giving up to 7.87% more power.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼