RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Optimization of a telescope movable support structure by means of Volumetric Displacements

        Ortega, Nestor F.,Robles, Sandra I. Techno-Press 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.31 No.4

        The Purpose of this paper is to show the applicability of a methodology, developed by the authors, with which to perform the mechanical optimization of space truss structures strongly restricted. This methodology use a parameter call "Volumetric Displacement", as the Objective Function of the optimization process. This parameter considers altogether the structure weight and deformation whose effects are opposed. The Finite Element Method is employed to calculate the stress/strain state and the natural frequency of the structure through a structural linear static and natural frequency analysis. In order to show the potentially of this simple methodology, its application on a large diameter telescope structure (10 m) considering the strongly restriction that became of its use, is presented. This methodology, applied in previous works on continuous structures, such as shell roof and fluid storage vessels, is applied in this case to a space truss structure, with the purpose of generalize its applicability to different structural topology. This technique could be useful in the morphology design of deployable and retractable roof structures, whose use has extensively spread in the last years.

      • KCI등재

        Optimization of a telescope movable support structure by means of Volumetric Displacements

        Néstor F. Ortega,Sandra I. Robles 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.31 No.4

        The Purpose of this paper is to show the applicability of a methodology, developed by the authors, with which to perform the mechanical optimization of space truss structures strongly restricted. This methodology use a parameter call “Volumetric Displacement”, as the Objective Function of the optimization process. This parameter considers altogether the structure weight and deformation whose effects are opposed. The Finite Element Method is employed to calculate the stress/strain state and the natural frequency of the structure through a structural linear static and natural frequency analysis. In order to show the potentially of this simple methodology, its application on a large diameter telescope structure (10 m) considering the strongly restriction that became of its use, is presented. This methodology, applied in previous works on continuous structures, such as shell roof and fluid storage vessels, is applied in this case to a space truss structure, with the purpose of generalize its applicability to different structural topology. This technique could be useful in the morphology design of deployable and retractable roof structures, whose use has extensively spread in the last years.

      • KCI등재

        Damage assessment based on static and dynamic responses applied to foundation beams

        Claudio J. Orbanich,Néstor F. Ortega,Sandra I. Robles,Marta B. Rosales 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.72 No.5

        Foundations are a vital part of structures. Over time, the foundations can deteriorate due to unforeseen overloads and/or settlements, resulting in the appearance of cracks in the concrete. These cracks produce changes in the static and dynamic behavior of the affected foundation, which alter its load carrying capacity. In this work, non-destructive techniques of relative simplicity of application are presented for the detection, location, and quantification of damage, using numerical models, solved with the finite element method and Power Series. For this, two types of parameters are used: static (displacement and elastic curvature) and dynamics (natural frequencies). In the static analysis, the damage detection is done by means of a finite elements model representing a beam supported on an elastic foundation with a discrete crack that varies in length and location. With regard to dynamic analysis, the governing equations of the model are presented and a method based on Power Series is used to obtain the solution for a data set, which could be the Winkler coefficient, the location of the crack or the frequency. In order to validate the proposed methodologies, these techniques are applied to data obtained from laboratory tests.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼