RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effects of carbonization conditions on the microporous structure and high-pressure methane adsorption behavior of glucose-derived graphene

        Faten Ermala Che Othman,Sadaki Samitsu,Norhaniza Yusof,Ahmad Fauzi Ismail 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.11

        A simple, promising, environmentally friendly, and high yield technique to synthesize high specific surface area (SSA) and porous graphene-like materials from glucose precursor through carbonization and controlled chemical iron chloride (FeCl3) activation was demonstrated. Designing this nanoporous graphene-based adsorbent with high SSA, abundant micropore volume, tunable pore size distribution, and high adsorption capacity, is crucial in order to deal with the demands of large-scale reversible natural gas storage applications. Raman spectroscopy, BET method of analysis, and N2 adsorption/desorption measurements at 196 oC were adopted to evaluate the structural and textural properties of the resultant glucose derived-graphene (gluGr) samples. The effects of different carbonization conditions, such as the inert environments (argon, helium, and argon) and temperatures (700, 800, 900, and 1,000 oC), have been studied. A glucose-derived graphene carbonized under nitrogen environment at 700 oC (NGr700) with highly interconnected network of micropores and mesopores and large SSA (767m2/g) exhibited excellent methane (CH4) storage property with exceptionally high adsorption capacity, superior to other glucose-derived graphene (gluGr) samples. A maximum volumetric capacity up to 42.08 cm3/g was obtained from CH4 adsorption isotherm at 25 oC and 35 bar. Note that the adsorption performance of the CH4 is highly associated with the SSA and microporosity of the gluGr samples, especially NGr700 that was successfully synthesized by FeCl3 activation under N2 environment.

      • KCI등재

        Methane adsorption by porous graphene derived from rice husk ashes under various stabilization temperatures

        Che Othman Faten Ermala,Ismail Mohd Shafri,Yusof Norhaniza,Samitsu Sadaki,Yusop Mohd Zamri,Tajul Arifin Nur Fatihah,Alias Nur Hashimah,Jaafar Juhana,Aziz Farhana,Wan Salleh Wan Norharyati,Ismail Ahmad 한국탄소학회 2020 Carbon Letters Vol.30 No.5

        The present work focused on the determination of texture, morphology, crystallinity, and gas adsorption characteristics of porous graphene prepared from rice husks ashes at diferent stabilization temperature. The stabilization temperature applied in this work is 100 °C, 200 °C, 300 °C, and 400 °C to convert rice husk into rice husk ashes (RHA). Chemical activation was adopted at temperature 800 °C using potassium hydroxide (KOH) as dehydrating agent at (1:5) impregnation ratio to convert RHA into rice husk ashes-derived graphene (GRHA). The resultant GRHA were characterized in terms of their morphologi�cal changes, SSA, crystallinity, and functional group with TEM, the BET method, Raman spectroscopy, and XRD analysis, respectively. Results from this study showed that the SSA of the GRHA at stabilization temperature 200 °C (1556.3 m2 /g) is the highest compared to the other stabilization temperature. Raman spectroscopy analysis revealed that all GRHA samples possess D, G, and 2D bands, which confrm the successful synthesis of the rice husks into porous graphene-like materials, known as GRHA. Appearance of difraction peak in XRD at 44.7° indicating the graphitic structure of all the GRHA sam�ples. Meanwhile, the TEM images of GRHA200 exhibited wrinkled structures due to the intercalation of oxygen and a few layers of graphene fakes. These wrinkled structures and graphene layers are the other factors that lead to the highest SSA of GRHA200 compared to other prepared samples GRHA. Furthermore, the adsorption capacity of CH4 for GRHA200 is up to 43 cm3 /g at 35 bar and ambient temperature, almost double the adsorption capacity performance of GRHA400 at the same operating pressure and temperature.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼