RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Multi-Obfuscation Approach for Preserving Privacy in Smart Transportation

        Sami S. Albouq,Adnan Ani Sen,Nabile Almoshfi,Mohammad Bin Sedeq,Nour Bahbouth International Journal of Computer ScienceNetwork S 2023 International journal of computer science and netw Vol.23 No.4

        These days, protecting location privacy has become essential and really challenging, especially protecting it from smart applications and services that rely on Location-Based Services (LBS). As the technology and the services that are based on it are developed, the capability and the experience of the attackers are increased. Therefore, the traditional protection ways cannot be enough and are unable to fully ensure and preserve privacy. Previously, a hybrid approach to privacy has been introduced. It used an obfuscation technique, called Double-Obfuscation Approach (DOA), to improve the privacy level. However, this approach has some weaknesses. The most important ones are the fog nodes that have been overloaded due to the number of communications. It is also unable to prevent the Tracking and Identification attacks in the Mix-Zone technique. For these reasons, this paper introduces a developed and enhanced approach, called Multi-Obfuscation Approach (MOA that mainly depends on the communication between neighboring fog nodes to overcome the drawbacks of the previous approach. As a result, this will increase the resistance to new kinds of attacks and enhance processing. Meanwhile, this approach will increase the level of the users' privacy and their locations protection. To do so, a big enough memory is needed on the users' sides, which already is available these days on their devices. The simulation and the comparison prove that the new approach (MOA) exceeds the DOA in many Standards for privacy protection approaches.

      • Certificate Revocation in Connected Vehicles

        Sami S. Albouq International Journal of Computer ScienceNetwork S 2023 International journal of computer science and netw Vol.23 No.5

        In connected vehicles, drivers are exposed to attacks when they communicate with unauthenticated peers. This occurs when a vehicle relies on outdated information resulting in interactions with vehicles that have expired or revoked certificates claiming to be legitimate nodes. Vehicles must frequently receive or query an updated revoked certificate list to avoid communicating with suspicious vehicles to protect themselves. In this paper, we propose a scheme that works on a highway divided into clusters and managed by roadside units (RSUs) to ensure authenticity and preserve hidden identities of vehicles. The proposed scheme includes four main components each of which plays a major role. In the top hierarchy, we have the authority that is responsible for issuing long-term certificates and managing and controlling all descending intermediate authorities, which cover specific regions (e.g., RSUs) and provide vehicles with short-term pseudonyms certificates to hide their identity and avoid traceability. Every certificate-related operation is recorded in a blockchain storage to ensure integrity and transparency. To regulate communication among nodes, security managers were introduced to enable authorization and access right during communications. Together, these components provide vehicles with an immediately revoked certificate list through RSUs, which are provided with publish/subscribe brokers that enable a controlled messaging infrastructure. We validate our work in a simulated smart highway environment comprising interconnected RSUs to demonstrate our technique's effectiveness.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼