RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        MHD micropumping of power-law fluids: A numerical solution

        Moghaddam, Saied 한국유변학회 2013 Korea-Australia rheology journal Vol.25 No.1

        The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.

      • KCI등재

        MHD micropumping of power-law fluids: A numerical solution

        Saied Moghaddam 한국유변학회 2013 Korea-Australia rheology journal Vol.25 No.1

        The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.

      • KCI등재

        MHD micropumping of viscoelastic fluids: an analytical solution

        Saied Moghaddam 한국유변학회 2021 Korea-Australia rheology journal Vol.33 No.2

        An analytical solution is found for examining the effect of a fluid’s elasticity on the performance of MHD micropumps. The test fluid is assumed to be an incompressible viscoelastic fluid obeying the Oldroyd-B model. The flow generated by the Lorentz force is assumed to be laminar, unidirectional, and two-dimensional. The effects of relaxation and retardation times are investigated on the volumetric flow rate. It is concluded that by a decrease in the relaxation time, the pulsatile nature of micropump can be eliminated in its transient phase. At sufficiently low relaxation times, the flow is predicted to monotonically reach its steady value at a much shorter time. By an increase in the retardation time, the pulsatile nature of micropump in its transient phase can also be eliminated and the flow will be more continuous in its steady conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼