RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Influence of pozzolans on properties of cementitious materials: A review

        Garg, Rishav,Garg, Rajni,Eddy, Nnabuk Okon Techno-Press 2021 Advances in nano research Vol.11 No.4

        Use of additives/supplementary materials in partial substitution of cement is gaining widespread attention across the world due to the sustainability issue with production of cement. With their pozzolanic activity & filler effect, use of nano-pozzolans such as nano-silica has been proved as quite promising & cost-effective for use as supplementary cementitious materials. This study is aimed at highlighting the effect of partial substitution of cement/addition of various nano-pozzolans on the hydration, strength and microstructure of the cementitious materials. Further, the effect of incorporation of other pozzolans has also been discussed. Comparative account of pozzolanic activity of different pozzolans has also been critically analyzed. It has been found that the cement matrix gets improved in terms of its microstructure by partial substitution of cement/addition of pozzolan in appropriate amount resulting in enhancement of the bulk properties by consumption of portlandite. The improved compressive strength of cementitious materials not only results in enhancement of the durability but also the service life of the construction structures and results in reduction of the cost incurred in maintenance and repair. Thus, the cement demand can be decreased by the partial substitution of cement/addition of such materials. It will result in an ultimate reduction of the greenhouse effect and lead to sustainable development.

      • SCIESCOPUS

        Experimental Investigation of Electrochemical Corrosion and Chloride Penetration of Concrete Incorporating Colloidal Nanosilica and Silica Fume

        Garg, Rishav,Garg, Rajni,Singla, Sandeep The Korean Electrochemical Society 2021 Journal of electrochemical science and technology Vol.12 No.4

        Enhancement of durability and reduction of maintenance cost of concrete, with the implementation of various approaches, has always been a matter of concern to researchers. The integration of pozzolans as a substitute for cement into the concrete is one of the most desirable technique. Silica fume (SF) and colloidal nanosilica (CS) have received a great deal of interest from researchers with their significant performance in improving the durability of concrete. The synergistic role of the micro and nano-silica particles in improving the main characteristics of cemented materials needs to be investigated. This work aims to examine the utility of partial substitution of cement by SF and CS in binary and ternary blends in the improvement of the durability characteristics linked to resistance for electrochemical corrosion using electrical resistivity and half-cell potential analysis and chloride penetration trough rapid chloride penetration test. Furthermore, the effects of this silica mixture on the compressive strength of concrete under normal and aggressive environment have also been investigated. Based on the maximum compression strength of the concrete, the optimal cement substituent ratios have been obtained as 12% SF and 1.5% CS for binary blends. The optimal CS and SF combination mixing ratios has been obtained as 1.0% and 12% respectively for ternary blends. The ternary blends with substitution of cement by optimal percentage of CS and SF exhibited decreased rate for electrochemical corrosion. The strength and durability studies were found in consistence with the microstructural analysis signifying the beneficiary role of CS and SF in upgrading the performance of concrete.

      • Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water

        Nnabuk Okon Eddy,Rajni Garg,Rishav Garg,Samson I. Eze,Emeka Chima Ogoko,Henrietta Ijeoma Kelle,Richard Alexis Ukpe,Raphael Ogbodo,Favour Chijoke Techno-Press 2023 Advances in nano research Vol.15 No.1

        Nanoparticles are known for their outstanding properties such as particle size, surface area, optical and electrical properties. These properties have significantly boasted their applications in various surface phenomena. In this work, calcium oxide nanoparticles were synthesized from periwinkle shells as an approach towards waste management through resource recovery. The sol gel method was used for the synthesis. The nanoparticles were characterized using X-Ray diffractometer (XRD), Fourier Transformed Infra-Red Spectrophotometer (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra violet visible spectrophotometer (UV-visible). While DLS and SEM underestimate the particle diameter, the BET analysis reveals surface area of 138.998 m<sup>2</sup>/g, pore volume = 0.167 m<sup>3</sup>/g and pore diameter of 2.47 nm. The nanoparticles were also employed as an adsorbent for the purification of dye (methyl orange) contaminated water. The adsorbent showed excellent removal efficiency (up to 97 %) for the dye through the mechanism of physical adsorption. The adsorption of the dye fitted the Langmuir and Temkin models. Analysis of FTIR spectrum after adsorption complemented with computational chemistry modelling to reveal the imine nitrogen group as the site for the adsorption of the dye unto the nanomaterials. The synthesized nanomaterials have an average particle size of 24 nm, showed a unique XRD peak and is thermally and mechanically stable within the investigated temperature range (30 to 70 ℃).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼