RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Batch Adsorptive Removal of Copper Ions in Aqueous Solutions by Ion Exchange Resins : 1200H and IRN97H

        Rengaraj, Selvaraj,Kim, Younghun,Joo, Cheol Kyun,Choi, Kyunghee,Yi, Jongheop 한국화학공학회 2004 Korean Journal of Chemical Engineering Vol.21 No.1

        The removal of copper from aqueous solution by ion exchange resins, such as 1200H and IRN97H, is described. Effect of initial metal ion concentration, agitation time and pH on adsorption capacities of ion exchange resins was investigated in a batch mode. The adsorption process, which is pH dependent, shows maximum removal of copper in the pH range 2-7 for an initial copper concentration of 10㎎/L. The experimental data have been analyzed by using the Freundlich, Langmuir, Redlich-Peterson, Temkin and Dubinin-Radushkevich isotherm models. The batch sorption kinetics have been tested for a first-order, pseudo-first order and pseudo-second order kinetic reaction models. The rate constants of adsorption for all these kinetic models have been calculated. Results showed that the intraparticle diffusion and initial sorption into resins of Cu(Ⅱ) in the ion exchange resins was the main rate limiting step. The uptake of copper by the ion exchange resins was reversible and thus has good potential for the removal/recovery of copper from aqueous solutions. We conclude that such ion exchange resins can be used for the efficient removal of copper from water and wastewater.

      • Porous Covalent Triazine Polymer as a Potential Nanocargo for Cancer Therapy and Imaging

        Rengaraj, Arunkumar,Puthiaraj, Pillaiyar,Haldorai, Yuvaraj,Heo, Nam Su,Hwang, Seung-Kyu,Han, Young-Kyu,Kwon, Soonjo,Ahn, Wha-Seung,Huh, Yun Suk American Chemical Society 2016 ACS APPLIED MATERIALS & INTERFACES Vol.8 No.14

        <P>A microporous covalent triazine polymer (CTP) network with a high surface area was synthesized via the Friedel-Crafts reaction and employed as a potential transport system for drug delivery and controlled release. The CTP was transformed to the nanoscale region by intense ultrasonication followed by filtration to yield nanoscale CTP (NCTP). This product showed excellent dispersibility in physiological solution while maintaining its chemical structure and porosity. An anticancer drug, doxorubicin (DOX), was loaded onto the NCTP through hydrophobic and pi-pi interactions, and its release was controlled at pH 4.8 and 7.4. The NCTP showed no toxicity toward cancer or normal cells, but the NCTP-DOX complex showed high efficacy against both types of cells in vitro. In-vitro cell imaging revealed that NCTP is a potential material for bioimaging. The potency of NCTP on cellular senescence was confirmed by the expression of senescence associated marker proteins p53 and p21. These results suggest that NCTP can be used as a new platform for drug delivery and imaging with potential applications in diagnosis and therapy.</P>

      • SCISCIESCOPUS

        Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken

        Rengaraj, D.,Truong, A.D.,Lee, S.H.,Lillehoj, H.S.,Hong, Y.H. Elsevier 2016 Veterinary immunology and immunopathology Vol.170 No.-

        <P>Necrotic enteritis (NE) is a serious problem to the poultry farms, which report NE outbreaks more than once per year, as a result of the inappropriate use of antibiotics in the feed. The NE affected bird die rapidly as a result of various pathophysiological complications in the intestine and immune system. Also, several studies have reported that the genes exclusively related to intestine and immune functions are significantly altered in response to NE. In this study, NE was induced in two genetically disparate chicken lines that are resistant (line 6.3) and sensitive (line 7.2) to avian leukosis and Marek's disease. The intestinal mucosal layer was collected from NE-induced and control chickens, and subjected to RNA-sequencing analysis. The involvement of differentially expressed genes in the intestinal mucosal layer of line 6.3 and 7.2 with the immune system-related pathways was investigated. Among the identified immune system related pathways, a candidate pathway known as chicken cytosolic DNA-sensing pathway (CDS pathway) was selected for further investigation. RNA-sequencing and pathway analysis identified a total of 21 genes that were involved in CDS pathway and differentially expressed in the intestinal mucosal layer of lines 6.3 and 7.2. The expression of CDS pathway genes was further confirmed by real-time qPCR. In the results, a majority of the CDS pathway genes were significantly altered in the NE-induced intestinal mucosal layer from lines 6.3 and 7.2. In conclusion, our study indicate that NE seriously affects several genes involved in innate immune defense and foreign DNA sensing mechanisms in the chicken intestinal mucosal layer. Identifying the immune genes affected by NE could be an important evidence for the protective immune response to NE-causative pathogens. (C) 2015 Elsevier B.V. All rights reserved.</P>

      • Testis-specific novel transcripts in chicken: in situ localization and expression pattern profiling during sexual development.

        Rengaraj, Deivendran,Kim, Duk Kyung,Zheng, Ying Hui,Lee, Sang In,Kim, Heebal,Han, Jae Yong Society for the Study of Reproduction [etc.] 2008 BIOLOGY OF REPRODUCTION Vol.79 No.3

        <P>Tissue-specific novel transcripts expressed during sexual development were examined by RT-PCR, quantitative RT-PCR (qRT-PCR), and in situ hybridization to provide data for chicken genomics. Public databases for transcript data have been constructed with known and unknown sequences of various tissues from different animals. However, the expression patterns and functions of the transcripts are less known. From the The Institute for Genomics Research Gallus gallus library, we examined 291 tentative consensus (TC) sequences that assembled 100% with transcripts by RT-PCR during male and female sexual development from Embryonic Day 6 to 25 wk of age. We found 85 TC sequences that were specific to testicular development; of these, 43 TC sequences were exclusively upregulated in 25-wk-old testis. Another 52 TC sequences were not specific to one tissue, but occurred in the testis and ovary at different developmental ages. Twelve testis-specific TC sequences upregulated in 25-wk-old testis were randomly selected and further examined with qRT-PCR. For precise localization, these 12 testis-specific TC sequences were examined by in situ hybridization with 25-wk-old adult testis. Six TC sequences were strongly expressed in secondary spermatocytes and haploid spermatids until spermatozoa release. Another six TC sequences were differentially expressed in the adluminal compartment of seminiferous tubules. Among the testis-specific TC sequences, TC120901 is a known gene, phospholipase C, zeta (PLCZ1). Our data provide potential insight into gene expression and genomic information on novel transcripts that are important to avian reproduction.</P>

      • Effects of Dietary Vitamin E on Fertility Functions in Poultry Species

        Rengaraj, Deivendran,Hong, Yeong Ho MDPI 2015 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.16 No.5

        <P>Vitamin E is found in high quantities in vegetable oils. Although vitamin E has multiple functions in humans and animals, its key function is protecting cells from oxidative damage. Since its discovery, several studies have demonstrated that vitamin E deficiency causes impaired fertility in humans and lab animals. However, the effects of vitamin E deficiency or of its supplementation on the fertility of farm animals, particularly on poultry, are less well studied. Therefore, a comprehensive review of the effects of dietary vitamin E on the fertility of poultry species is needed in order to understand the beneficial role of vitamin E in the maintenance of sperm and egg qualities. Based on the observations reviewed here, we found that a moderate amount of vitamin E in poultry diet significantly protects semen/sperm qualities in male birds and egg qualities in female birds via decreasing the lipid peroxidation in semen/sperms and eggs. This review provides an overall understanding of the effects of dietary vitamin E on fertility functions in poultry species.</P>

      • Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor

        Rengaraj, Arunkumar,Haldorai, Yuvaraj,Kwak, Cheol Hwan,Ahn, Seungbae,Jeon, Ki-Joon,Park, Seok Hoon,Han, Young-Kyu,Huh, Yun Suk The Royal Society of Chemistry 2015 Journal of Materials Chemistry B Vol.3 No.30

        <P>We demonstrated a non-enzymatic cholesterol sensor based on a nickel oxide (NiO) and high quality graphene composite for the first time. Graphene was grown by a chemical vapor deposition technique (CVD). The nanocomposite was fabricated through the electrodeposition of nickel hydroxide onto the surface of the CVD-grown graphene, which was followed by thermal annealing. The successful formation of the NiO/graphene composite was confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. The deposition of flower-like NiO onto the graphene surface was confirmed by scanning electron microscopy. Electrochemical analyses were conducted to investigate the characteristics of the sensor during the detection of cholesterol. The sensor showed a high sensitivity of 40.6 mA μM<SUP>−1</SUP> cm<SUP>−2</SUP>, a rapid response time of 5 s, and a low detection of limit of 0.13 μM. We also investigated the effects of common interfering substances on the ability of the sensor to detect cholesterol. Furthermore, we successfully determined the cholesterol in a milk sample using the developed sensor. The composite electrode exhibited excellent detection of cholesterol with good reproducibility and long-term stability owing to the combined effects of NiO and graphene.</P>

      • Regulation of glucose phosphate isomerase by the 3'UTR-specific miRNAs miR-302b and miR-17-5p in chicken primordial germ cells.

        Rengaraj, Deivendran,Park, Tae Sub,Lee, Sang In,Lee, Bo Ram,Han, Beom Ku,Song, Gwonhwa,Han, Jae Yong Society for the Study of Reproduction [etc.] 2013 BIOLOGY OF REPRODUCTION Vol.89 No.2

        <P>Glucose phosphate isomerase (GPI) involves in the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate in glucose pathways. Because glucose metabolism is crucial for the proliferation and differentiation of embryonic stem and germ cells, reducing GPI expression may affect the characteristic features of these cells. MicroRNAs (miRNAs) have been shown to regulate genes. In the present study, we investigated the regulation of chicken GPI by its predicted miRNAs. We determined the expression patterns of seven GPI 3'-untranslated region (3'UTR)-targeting miRNAs, including the gga-miR-302 cluster, gga-miR-106, gga-miR-17-5p, and gga-miR-20 cluster in chicken primordial germ cells (PGCs), compared with GPI mRNA. Among the miRNAs, gga-miR-302b, gga-miR-302d, and gga-miR-17-5p were expressed at lower levels than GPI mRNA. The remaining four miRNAs-gga-miR-302c, gga-miR-106, gga-miR-20a, and gga-miR-20b-were expressed at higher levels than the expression of GPI mRNA. Next, we cotransfected four candidate miRNAs-gga-miR-302b, gga-miR-106, gga-miR-17-5p, and gga-miR-20a-with GPI 3'UTR into 293FT cells by dual fluorescence reporter assay. Overexpression of gga-miR-302b and gga-miR-17-5p miRNAs in 293FT cells significantly downregulated GPI expression, whereas the other two miRNAs had no effect. Then, knockdown and overexpression of these four candidate miRNAs were performed by RNA interference assay to regulate GPI in PGCs. In the RNA interference assay, the expression of GPI was greatly regulated by gga-miR-302b and gga-miR-17-5p. Finally, we examined the effects of GPI regulation on PGC proliferation and migration. Our results suggested that the regulation of GPI by gga-miR-302b and gga-miR-17-5p affected PGCs proliferation. However, regulation of GPI using these two miRNAs did not affect the migration of PGCs into embryonic gonads.</P>

      • Expression and knockdown analysis of glucose phosphate isomerase in chicken primordial germ cells.

        Rengaraj, Deivendran,Lee, Sang In,Yoo, Min,Kim, Tae Hyun,Song, Gwonhwa,Han, Jae Yong Society for the Study of Reproduction [etc.] 2012 BIOLOGY OF REPRODUCTION Vol.87 No.3

        <P>Glucose is an important monosaccharide required to generate energy in all cells. After entry into cells, glucose is phosphorylated to glucose-6-phosphate and then transformed into glycogen or metabolized to produce energy. Glucose phosphate isomerase (GPI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. Without GPI activity or fructose-6-phosphate, many steps of glucose metabolism would not occur. The requirement for GPI activity for normal functioning of primordial germ cells (PGCs) needs to be identified. In this study, we first examined the expression of chicken GPI during early embryonic development and germ cell development. GPI expression was strongly and ubiquitously detected in chicken early embryos and embryonic tissues at Embryonic Day 6.5 (E6.5). Continuous GPI expression was detected in PGCs and germ cells of both sexes during gonadal development. Specifically, GPI expression was stronger in male germ cells than in female germ cells during embryonic development and the majority of post-hatching development. Then, we used siRNA-1499 to knock down GPI expression in PGCs. siRNA-1499 caused an 85% knockdown in GPI, and PGC proliferation was also affected 48 h after transfection. We further examined the knockdown effects on 28 genes related to the glycolysis/gluconeogenesis pathway and the endogenous glucose level in chicken PGCs. Among genes related to glycolysis/gluconeogenesis, 20 genes showed approximately 3-fold lower expression, 4 showed approximately 10-fold lower, and 2 showed approximately 100-fold lower expression in knockdown PGCs. The endogenous glucose level was significantly reduced in knockdown PGCs. We conclude that the GPI gene is crucial for maintaining glycolysis and supplying energy to developing PGCs.</P>

      • The distribution of neuron‐specific gene family member 1 in brain and germ cells: Implications for the regulation of germ‐line development by brain

        Rengaraj, Deivendran,Lee, Bo Ram,Park, Kyung Je,Lee, Sang In,Kang, Kyung Soo,Choi, Jin Won,Kang, Seok Jin,Song, Gwonhwa,Han, Jae Yong Wiley‐Liss, Inc. 2011 Developmental dynamics Vol.240 No.4

        <P><B>Abstract</B></P><P>Vesicular acidification at early endosomes dissociates endocytosed receptor‐ligand complexes. The ligands, receptors, or both are then directed to late endosomes for degradation or recycled back to the plasma membrane. Of neuron‐specific gene (NSG) family members, early endosomal protein neuron‐specific gene family member 1 (NSG1) is the most important in receptor recycling. In this study, we characterized chicken NSG1 (cNSG1). We found several functional sites related to endocytotic machinery in cNSG1 that were highly conserved with most other vertebrate NSG1 proteins. We examined the tissue and duration specificity and the temporal and spatial patterns of c<I>NSG1</I> expression<I>.</I> c<I>NSG1</I> expression was preferentially located in all regions of the brain, neuroendocrine glands, and spinal cord. Unexpectedly, c<I>NSG1</I> expression was strongly detected during male and female germ‐line development. Expression of <I>NSG1</I> in two apparently unrelated cell types such as neurons and germ cells suggests <I>NSG1</I> roles in neurons and germ‐cells chemotaxis and endocytotic machinery. Developmental Dynamics 240:850–861, 2011. © 2011 Wiley‐Liss, Inc.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼