RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Compartmented Microfluidic Reactor for Protein Modification Via Solid-phase Reactions - Semi-automated Examination of Two PEGylation Routes

        Regina Fraas,Jonas Ferdinand Hübner,Juliane Diehm,Ramona Faas,Rudolf Hausmann,Matthias Franzreb 한국생물공학회 2019 Biotechnology and Bioprocess Engineering Vol.24 No.2

        Microfluidics has emerged as a relatively new scientific field enabling fast reaction times and low demands for reactants. Pursuing these advantages, a compartmented, microfluidic reactor was developed in our group which is suitable for the semi-automated processing of complex reaction cascades including solid phases. As one of the first application examples, we analyzed the influence of different reaction paths on the modification of a model protein in a solid-phase reaction. Extensive characterization experiments were performed: Amongst others, an organic phase was identified which is immiscible with water and compatible with the designated PEGylation reactions. Such organic solvents function as separation plugs for different water based reaction plugs within the microfluidic system. Mixing within the microfluidic system was investigated, in order to ensure an efficient solid-phase reaction. Subsequently, solid-phase PEGylation of the target protein was performed within the microfluidic system via two different reaction cascades. The longest reaction cascades comprised all reactions from particle activation, via protein immobilization and PEGylation to elution and consisted of seven steps. PEGylation in the reactor took place with comparable yields and results as in the control reaction outside the reactor. Due to the modularity, the presented reactor proves to be a versatile instrument for semi-automated reactions and parameter screening, being compatible with biological systems. It combines the advantages of closed channel systems like lab on a chip microfluidics with the flexibility and preparative scale sample volume of larger liquid handling stations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼