RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Multi constrained optimization combining ARMAX with differential search for damage assessment

        Lakshmi Krishansamy,Rama Mohan Rao Arumulla 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.72 No.6

        Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

      • KCI등재

        A hybrid structural health monitoring technique for detection of subtle structural damage

        Lakshmi Krishansamy,Rama Mohan Rao Arumulla 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.5

        There is greater significance in identifying the incipient damages in structures at the time of their initiation as timely rectification of these minor incipient cracks can save huge maintenance cost. However, the change in the global dynamic characteristics of a structure due to these subtle damages are insignificant enough to detect using the majority of the current damage diagnostic techniques. Keeping this in view, we propose a hybrid damage diagnostic technique for detection of minor incipient damages in the structures. In the proposed automated hybrid algorithm, the raw dynamic signatures obtained from the structure are decomposed to uni-modal signals and the dynamic signature are reconstructed by identifying and combining only the uni-modal signals altered by the minor incipient damage. We use these reconstructed signals for damage diagnostics using ARMAX model. Numerical simulation studies are carried out to investigate and evaluate the proposed hybrid damage diagnostic algorithm and their capability in identifying minor/incipient damage with noisy measurements. Finally, experimental studies on a beam are also presented to compliment the numerical simulations in order to demonstrate the practical application of the proposed algorithm.

      • SCIESCOPUS

        A hybrid structural health monitoring technique for detection of subtle structural damage

        Krishansamy, Lakshmi,Arumulla, Rama Mohan Rao Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.22 No.5

        There is greater significance in identifying the incipient damages in structures at the time of their initiation as timely rectification of these minor incipient cracks can save huge maintenance cost. However, the change in the global dynamic characteristics of a structure due to these subtle damages are insignificant enough to detect using the majority of the current damage diagnostic techniques. Keeping this in view, we propose a hybrid damage diagnostic technique for detection of minor incipient damages in the structures. In the proposed automated hybrid algorithm, the raw dynamic signatures obtained from the structure are decomposed to uni-modal signals and the dynamic signature are reconstructed by identifying and combining only the uni-modal signals altered by the minor incipient damage. We use these reconstructed signals for damage diagnostics using ARMAX model. Numerical simulation studies are carried out to investigate and evaluate the proposed hybrid damage diagnostic algorithm and their capability in identifying minor/incipient damage with noisy measurements. Finally, experimental studies on a beam are also presented to compliment the numerical simulations in order to demonstrate the practical application of the proposed algorithm.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼