RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Leaching kinetics of a Nigerian complex covellite ore by the ammonia-ammonium sulfate solution

        Alafara Abdullahi Baba,Ayo Felix Balogun,Daud Temitope Olaoluwa,Rafiu Babatunde Bale,Folahan AmooAdekola,Abdul Ganiyu Funsho Alabi 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.4

        Hydrometallurgical treatment of copper sulfide ore is increasingly establishing itself as a feasible route for the extraction of copper and recovery of associated precious metals value. This is attributed to the merits of this route, which include suitability for low-grade and complex ores, high recoveries, competitive economics, and other operational features. The leaching kinetics of Nigerian complex covellite ore was investigated in ammonia-ammonium sulfate solution. The concentration of ammonia and ammonium sulfate, the ore particle size, and the temperature were chosen as parameters in the experiments. The results show that temperature, concentration of ammonia-ammonium sulfate has favorable influence on the leaching rate of covellite ores; however, leaching rate decreases with increasing particle size. At optimal conditions (1.75mol/L NH4OH+0.5mol/L (NH4)2SO4, −90+75 μm, 75 oC, with moderate stirring) about 86.2% of copper ore reacted within 120 minutes. The mechanism of the leaching was further established by characterizing the raw ore and the leached residue by EDXRF - chemical composition, SEM - structural morphology and XRD - phase identification studies. From the X-ray diffraction analysis, the partially unreacted Cu and S phases were presumed to be CuO, and the iron present in the CuS phase was mainly converted to hematite (Fe2O3·H2O), as the CuS phase disintegrated and remained in the residue afterward.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼