RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

        Tan, Li,Wang, Jun,Tanizaki, Junko,Huang, Zhifeng,Aref, Amir R.,Rusan, Maria,Zhu, Su-Jie,Zhang, Yiyun,Ercan, Dalia,Liao, Rachel G.,Capelletti, Marzia,Zhou, Wenjun,Hur, Wooyoung,Kim, NamDoo,Sim, Taebo,G National Academy of Sciences 2014 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.111 No.45

        <P><B>Significance</B></P><P>Inhibitors of the FGF receptors (FGFRs) are currently under clinical investigation for the treatment of various cancers. All currently approved kinase inhibitors eventually are rendered useless by the emergence of drug-resistant tumors. We used structure-based drug design to develop the first, to our knowledge, selective, next-generation covalent FGFR inhibitors that can overcome the most common form of kinase inhibitor resistance, the mutation of the so-called “gatekeeper” residue located in the ATP-binding pocket. We also describe a novel kinase inhibitor design strategy that uses a single electrophile to target covalently cysteines that are located in different positions within the ATP-binding pocket. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance.</P><P>The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.</P>

      • KCI등재

        Implementation of the IPACK (Infiltration between the Popliteal Artery and Capsule of the Knee) block into a multimodal analgesic pathway for total knee replacement

        Brandon Kandarian,Pier F. Indelli,Sanjay Sinha,Oluwatobi O. Hunter,Rachel R. Wang,T. Edward Kim,Alex Kou,Edward R. Mariano 대한마취통증의학회 2019 Korean Journal of Anesthesiology Vol.72 No.3

        Background: The Infiltration between the Popliteal Artery and Capsule of the Knee (IPACK) block is a new anesthesiologist- administered analgesic technique for controlling posterior knee pain that has not yet been well studied in total knee arthroplasty (TKA) patients. We compared pain outcomes in TKA patients before and after implementation of the IPACK with the hypothesis that patients receiving IPACK blocks will report lower pain scores on postoperative day (POD) 0 than non-IPACK patients. Methods: With Institutional Review Board approval, we retrospectively reviewed data for consecutive TKA patients by a single surgeon 4 months before (PRE) and after (POST) IPACK implementation. All TKA patients received adductor canal catheters and peri-operative multimodal analgesia. The primary outcome was pain on POD 0. Other outcomes were daily pain scores, opioid consumption, ambulation distance, length of stay, and adverse events within 30 days. Results: Post-implementation, 48/50 (96%) of TKA patients received an IPACK block, and they were compared with 32 patients in the PRE group. On POD 0, the lowest pain score (median [10th–90th percentiles]) was significantly lower for the POST group compared to the PRE group (0 [0–4.3] vs. 2.5 [0–7]; P = 0.003). The highest patient-reported pain scores on any POD were similar between groups with no differences in other outcomes. Conclusions: Within a multimodal analgesic protocol, addition of IPACK blocks decreased the lowest pain scores on POD 0. Although other outcomes were unchanged, there may be a role for new opioid-sparing analgesic techniques, and changing clinical practice change can occur rapidly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼