RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Improvement of Knee Flexion and Extension Simulation Accuracy in KneeRobo

        Qichang Qi,Yoshie Maeda,Kazunori Yamazaki,Noritaka Sato,Yoshifumi Morita,Hiroyuki Ukai,Kouji Sanaka 제어로봇시스템학회 2014 제어로봇시스템학회 국제학술대회 논문집 Vol.2014 No.10

        In a previous paper, we reported on the initial development of KneeRobo, which replicates knee joint troubles experienced by patients in order to enable students studying to become physical or occupational therapists to gain practical training/testing virtually. We also developed a control algorithm that enabled KneeRobo to realize involuntary internal/external rotation during knee flexion and extension. However, it is well known that in addition to internal/external rotation, abduction/adduction also occurs involuntarily during knee flexion and extension. Consequently, this paper proposes a new control method that improves the simulation accuracy of KneeRobo’s knee joint movements. This is accomplished by developing a control algorithm and designing a pulley arrangement that facilitates realization of involuntary movements such as internal/external rotation and abduction/adduction during knee flexion and extension by KneeRobo. The results of experimental comparison with the actual knee joint movements of a healthy person confirm that the knee joint movements simulated by the improved KneeRobo are accurate.

      • SCIESCOPUS

        Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations

        Qi, Chang,Remennikov, Alex,Pei, Lian-Zheng,Yang, Shu,Yu, Zhi-Hang,Ngo, Tuan D. Elsevier 2017 COMPOSITE STRUCTURES -BARKING THEN OXFORD- Vol.180 No.-

        <P><B>Abstract</B></P> <P>Protecting building, critical infrastructure and military vehicles from Improvised Explosive Devices (IEDs) has become a critical task. This study aims to examine the performance of a new protective system utilizing auxetic honeycomb-cored sandwich panels for mitigation of shock loads from close-in and contact detonations of high explosives. Both field blast tests and drop weight tests were performed using the proposed sandwiches asa shield for concrete panels in combination with conventional steel protective plates. The combined shield was found to be effective in protecting reinforced concrete structures against severe impact and close-in blast loadings. The honeycomb core with re-entrant hexagonal cells shows evident auxetic characteristics which contribute substantially to outstanding force mitigation and blast-resistance performances of such sandwich panels. Numerical simulations showed good agreement with the experimental results. The proposed auxetic panels were found to perform better than conventional honeycomb panels of the same size, areal density and material. Both were found to boost the energy absorption of the monolithic steel plate by a factor of 2.5 by changing its deformation pattern under close-in blast loading. In addition, a combination of the steel plate and an auxetic sandwich panel has aerial specific energy absorption (<I>ASEA</I>) higher than either of them, showing great potential for the development of lightweight blast protection of civil, mining, military, nuclear infrastructure and vehicles.</P>

      • KCI등재

        The Optimization of Control Parameters: Finite-time and Fixed-time Synchronization of Inertial Memristive Neural Networks with Proportional Delays and Switching Jumps Mismatch

        Qi Chang,Yongqing Yang,Li Li,Fei Wang 제어·로봇·시스템학회 2021 International Journal of Control, Automation, and Vol.19 No.7

        This thesis’s object is inertial memristive neural networks (IMNNs) with proportional delays and switching jumps mismatch. Different from the traditional bounded delay, the proportional delay will be infinite as t → ∞. The finite-time synchronization (FN-TS) and fixed-time synchronization (FX-TS) can be realized with the devised controllers for the drive-response systems (D-RSs). Along with the Lyapunov function and some inequalities, the synchronization criteria of D-RSs are given. This paper presents an optimization model with minimum control energy and dynamic error as objective functions, aiming to obtain more accurate and optimized controller parameters. An intelligent algorithm: particle swarm optimization with stochastic inertia weight (SIWPSO) algorithm is introduced to solve the optimization model. Meanwhile, an integrated algorithm for selecting optimal control parameters is presented as well. In this method, the optimal control parameters and the setting time of synchronization can be obtained directly. At last, some simulations are presented to verify the theorems and the optimization model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼