RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Rapid and reusable detection of hydrogen peroxide using polyurethane scaffold incorporated with cerium oxide nanoparticles

        Pathikrit Saha,Anoth Maharajan,Pritam Kumar Dikshit,김범수 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.12

        We report a novel approach to using a polyurethane scaffold incorporated with cerium oxide nanoparticles as an alternative to the natural enzyme horseradish peroxidase for rapid and reusable detection of hydrogen peroxide. After the preparation of polyurethane from soybean oil and malic acid, cerium or iron oxide nanoparticles were synthesized and incorporated into the polyurethane scaffold by ultrasonic treatment. Formation of nanoparticles was characterized using Fourier transform infrared, transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Iron oxide nanoparticles (FeONPs) with an average size of 50nm were not uniformly integrated; however, spherical cerium oxide nanoparticles (CeONPs) with an average size of 14nm were easily incorporated into the polyurethane scaffold. The CeONP-incorporated polyurethane scaffold was highly responsive (<10s) to H2O2, with a limit of detection of 3.18µM, and was reusable for at least ten cycles without significant loss of detection activity. However, the response time of CeONP solution was more than 5min. Both FeONP solution and FeONP incorporated polyurethane scaffold were poor at detecting H2O2.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼