RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Physiological flow of shear-thinning viscoelastic fluid past an irregular arterial constriction

        Sarifuddin, Sarifuddin,Chakravarty, Santabrata,Mandal, Prashanta Kumar 한국유변학회 2013 Korea-Australia rheology journal Vol.25 No.3

        The present investigation deals with the effect of the shape of a stenosis on the flow characteristics of blood, having shear-thinning viscoelastic rheological properties by using a suitable mathematical model. Keeping the relevance of the physiological situation, the mathematical model is developed by treating blood as a non-Newtonian shear-thinning viscoelastic fluid characterised by unsteady Oldroyd-3-constant model through an axisymmetric irregular arterial stenosis obtained from casting of a mildly stenosed artery (cf. Back et al., 1984). Comparison with the well-known cosine-shaped stenosis, in order to estimate the effect of surface roughness on the flow characteristics of blood, has however not been ruled out from the present study. Numerical illustrations are presented for a physiological flow, as well as for an equivalent simple pulsatile flow with equal stroke volume to that of the physiological flow, and the differences in their flow behaviour are recorded and discussed. The Marker and Cell method is developed in cylindrical co-ordinate system in order to tackle the highly nonlinear governing equations of motion. The effects of the quantities of significance such as Reynolds number, Deborah number, blood viscoelasticity and flow pulsatility, as well on the velocity components, pressure drop, wall shear stress and patterns of streamlines are quantitatively investigated graphically. Comparison of the results reveals that although the behaviour of two different pulses are similar at the same instant of time, there exist some important deviations in the flow pattern, pressure drop and wall shear stress as well. The present results also predict that the excess pressure drop across the cosine stenosis compared with the irregular one is consistent with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.

      • KCI등재

        Physiological flow of shear-thinning viscoelastic fluid past an irregular arterial constriction

        Sarifuddin,Santabrata Chakravarty,Prashanta Kumar Mandal 한국유변학회 2013 Korea-Australia rheology journal Vol.25 No.3

        The present investigation deals with the effect of the shape of a stenosis on the flow characteristics of blood, having shear-thinning viscoelastic rheological properties by using a suitable mathematical model. Keeping the relevance of the physiological situation, the mathematical model is developed by treating blood as a non-Newtonian shear-thinning viscoelastic fluid characterised by unsteady Oldroyd-3-constant model through an axisymmetric irregular arterial stenosis obtained from casting of a mildly stenosed artery (cf. Back et al., 1984). Comparison with the well-known cosine-shaped stenosis, in order to estimate the effect of surface roughness on the flow characteristics of blood, has however not been ruled out from the present study. Numerical illustrations are presented for a physiological flow, as well as for an equivalent simple pulsatile flow with equal stroke volume to that of the physiological flow, and the differences in their flow behaviour are recorded and discussed. The Marker and Cell method is developed in cylindrical co-ordinate system in order to tackle the highly nonlinear governing equations of motion. The effects of the quantities of significance such as Reynolds number, Deborah number, blood viscoelasticity and flow pulsatility, as well on the velocity components, pressure drop, wall shear stress and patterns of streamlines are quantitatively investigated graphically. Comparison of the results reveals that although the behaviour of two different pulses are similar at the same instant of time, there exist some important deviations in the flow pattern, pressure drop and wall shear stress as well. The present results also predict that the excess pressure drop across the cosine stenosis compared with the irregular one is consistent with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.

      • KCI등재

        MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

        Pal, Pallav Jyoti,Sarwardi, Sahabuddin,Saha, Tapan,Mandal, Prashanta Kumar The Korean Society of Computational and Applied Ma 2011 Journal of applied mathematics & informatics Vol.29 No.3

        Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

      • KCI등재

        MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

        Pallav Jyoti Pal,Sahabuddin Sarwardi,Tapan Saha,Prashanta Kumar Mandal 한국전산응용수학회 2011 Journal of applied mathematics & informatics Vol.29 No.3

        Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼