RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)

        Choubey, Pankaj K.,Chung, Kang-Sup,Kim, Min-seuk,Lee, Jae-chun,Srivastava, Rajiv R. Elsevier 2017 Minerals engineering Vol.110 No.-

        <P><B>Abstract</B></P> <P>The uncertainty in production and utilization with the availability of lithium rich minerals and brine in a limited land area has grown the attention for the exploitation of those resources not coming under a specific boundary. Approximately 230 billion tons of lithium in ubiquitous sea water and generation of a huge amount of used lithium ion batteries (spent LIBs) in different corner of the end-user countries can play a major role to change the scenario of securing lithium as a raw material for industry. Therefore, it needs to be exploited in such an effective manner that it can assure the mitigation of projected supply risk of this energy-critical element. To explore the commercial viability for their sustainable exploitation, it is imperative to review the methodologies that have been investigated and have clear potential for upscaling.</P> <P>This article deals with the processing of those resources that do not contributes yet to lithium supply in commodity market, and include the lithium recovery from sea water and spent LIBs. A purposive discussion on the electro-dialysis and reverse osmosis for the separation and recovery of lithium from sea water is of vital interest in future. A routinely disposed spent LIBs is a huge reservoir of lithium and need to be recovered as a main product along with the costlier cobalt, while recycling the spent LIBs. The various extraction and recovery processes of lithium are subdivided according to the adopted methodology, selection of lixiviant and obtaining the product in the desired form, whilst the technological and chemical perspective is also discussed. The deliberations on the edges and/or drawbacks, complications and prospects of the different processes are also included. It is believed that this state-of-the-art review can contribute in formulating the strategy for fulfilling the global energy demand by a sustainable recovery of lithium from its non-conventional resources, and can provide future research directions.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Exploitation of Lithium from sea water and spent batteries are critically reviewed. </LI> <LI> Li recovery via adsorption and electrodialysis process from sea water is compared. </LI> <LI> Pretreatment follows dismantling of LIBs to enrich the metals in black mass, LiM<SUB>x</SUB>O<SUB>y.</SUB> </LI> <LI> Acid/alkali leaching followed by solvent extraction to separate the metals. </LI> <LI> Precipitation is applied as a final step to get Li<SUB>2</SUB>CO<SUB>3</SUB> from the both sources. </LI> </UL> </P>

      • KCI등재

        구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 – 합성수지와의 비교

        Shilpa K. Bawkar,Manis K. Jha,Pankaj K. Choubey,Rukshana Parween,Rekha Panda,Pramod K. Singh,이재천 한국자원리싸이클링학회 2022 資源 리싸이클링 Vol.31 No.4

        Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies. 구리는 우수한 특성, 특히 높은 전도성과 낮은 저항으로 인해 전기/전자 제조 산업에 널리 사용되는 비철금속 중 하나이다. 이러한 산업의 표면 처리 공정에서는 구리 함량이 높은 폐수가 발생하며, 직간접적으로 수계로 배출된다. 이는 심각한 환경 오염을 일으키고 또한귀중한 유용금속의 손실을 초래한다. 이러한 문제를 극복하기 위하여, 효율적이고 저렴하며 친환경적인 흡착제를 찾기 위한 목적으로 흡착 분야에서 전 세계적으로 지속적인 연구개발이 진행되고 있다. 이러한 점을 고려하여, 본 연구에서는 위와 같은 폐수로부터 구리 흡착을 위한 바이오 흡착제로서 식물뿌리(Datura 뿌리 분말)의 성능을 합성 흡착제(Tulsion T-42)와 비교하였다. 실험은 흡착제 투여량, 접촉시간, pH, 주입액 농도 등의 변수들을 최적화하기 위하여 회분식으로 수행되었다. 초기구리농도가 100 ppm이고 pH가 4인 주입액에서, 0.2 g Datura 뿌리 분말을 15분간 접촉하였을 때 구리 흡착율은 95%이었으며, 0.1 g Tulsion T-42은 30분간 접촉에서 95%의 흡착율을 나타내었다. 두 흡착제의 흡착 데이터는 Freundlich 등온선과 잘 일치하였으며, 유사 2차 속도식을 따르는 것을 나타내었다. 전체 결과는 본연구의 바이오 흡착제가 표면처리 공정의 폐액 또는 폐수로부터 금속 회수에 적용될 가능성을 보여주고 있다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼