RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        NO<SUB>x</SUB> emission modeling at cement plants with co-processing alternative fuels using ANN

        Betul OZTURK,Onur OZTURK,Aykan KARADEM?R 대한환경공학회 2022 Environmental Engineering Research Vol.27 No.5

        The use of wastes as alternative fuel (AF) at the cement plants for clinkerization processes has increased in recent years as sustainable waste management. Such co-processing of AFs at cement plants causes some changes in the composition of the plant emissions, depending on waste type, kiln thermal power, thermal substitution rate, etc. Emissions of nitrogen oxides (NOx) are among the major environmental concerns in these plants. The paper includes a modeling study of NOx emissions at a cement plant during the co-processing of AFs. Due to the non-linear characteristic of the relationship between operational parameters and NOx emissions, the artificial neural network (ANN) approach was applied and studied. The study showed that NOx emissions can be predicted satisfactorily by using ANN at cement plants. Therefore, the model proposed may be used by cement plant operators to estimate their emission levels before starting the use of a new fuel source.

      • SCIESCOPUS

        Estimation of ultimate torque capacity of the SFRC beams using ANN

        Engin, Serkan,Ozturk, Onur,Okay, Fuad Techno-Press 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.53 No.5

        In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.

      • SCOPUSKCI등재

        Antithrombotic effect of epigallocatechin gallate on the patency of arterial microvascular anastomoses

        Igde, Murat,Ozturk, Mehmet Onur,Yasar, Burak,Bulam, Mehmet Hakan,Ergani, Hasan Murat,Unlu, Ramazan Erkin Korean Society of Plastic and Reconstructive Surge 2019 Archives of Plastic Surgery Vol.46 No.3

        Background Microvascular anastomosis patency is adversely affected by local and systemic factors. Impaired intimal recovery and endothelial mechanisms promoting thrombus formation at the anastomotic site are common etiological factors of reduced anastomosis patency. Epigallocatechin gallate (EGCG) is a catechin derivative belonging to the flavonoid subgroup and is present in green tea (Camellia sinensis). This study investigated the effects of EGCG on the structure of vessel tips used in microvascular anastomoses and evaluated its effects on thrombus formation at an anastomotic site. Methods Thirty-six adult male Wistar albino rats were used in the study. The right femoral artery was cut and reanastomosed. The rats were divided into two groups (18 per group) and were systemically administered either EGCG or saline. Each group were then subdivided into three groups, each with six rats. Axial histological sections were taken from segments 1 cm proximal and 1 cm distal to the microvascular anastomosis site on days 5, 10, and 14. Results Thrombus formation was significantly different between the EGCG and control groups on day 5 (P=0.015) but not on days 10 or 14. The mean luminal diameter was significantly greater in the EGCG group on days 5 (P=0.002), 10 (P=0.026), and 14 (P=0.002). Intimal thickening was significantly higher on days 5 (P=0.041) and 10 (P=0.02). Conclusions EGCG showed vasodilatory effects and led to reduced early thrombus formation after microvascular repair. Similar studies on venous anastomoses and random or axial pedunculated skin flaps would also contribute valuable findings relevant to this topic.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼