RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors

        Nagaraju, G.,Raju, G. S.,Ko, Y.,Yu, J. Royal Society of Chemistry 2016 Nanoscale Vol.8 No.2

        <P>Hierarchical three-dimensional (3D) porous nanonetworks of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets (NSs) are grown and decorated on flexible conductive textile substrate (CTs) via a simple two-electrode system based electrochemical deposition (ED) method. By applying a proper external cathodic voltage of -1.2 V for 15 min, the Ni-Co LDH NSs are densely deposited over the entire surface of the CTs with good adhesion. The flexible Ni-Co LDH NSs on CTs (Ni-Co LDH NSs/CTs) architecture with high porosity facilitates enhanced electrochemical performance in 1 M KOH electrolyte solution. The effect of growth concentration and external cathodic voltage on the electrochemical properties of Ni-Co LDH NSs/CTs is also investigated. The Ni10Co5 LDH NSs/CTs electrode exhibits a high specific capacitance of 2105 F g(-1) at a current density of 2 A g(-1) as well as an excellent cyclic stability as a pseudocapacitive electrode due to the advantageous properties of 3D interconnected porous frameworks of Ni10Co5 LDH NSs/CTs. This facile fabrication of bimetallic hydroxide nanostructures on CTs can provide a promising electrode for low-cost energy storage device applications.</P>

      • SCISCIESCOPUS

        Three-dimensional activated porous carbon with meso/macropore structures derived from fallen pine cone flowers: A low-cost counter electrode material in dye-sensitized solar cells

        Nagaraju, Goli,Lim, Joo Ho,Cha, Sung Min,Yu, Jae Su Elsevier 2017 JOURNAL OF ALLOYS AND COMPOUNDS Vol.693 No.-

        <P><B>Abstract</B></P> <P>Honeycomb-like activated porous carbon (HPC) powder with meso/macropore structures was successfully prepared via chemical activation and pyrolysis processes under inert gas atmosphere. Herein, the naturally available pine cone flowers with abundant carbon contents were employed as a biomass to synthesize the HPC sample. The structure and morphology of the HPC powder were characterized by various physicochemical techniques. Moreover, the as-prepared HPC sample was uniformly coated on fluorine doped tin oxide glass using a smooth brush and used as a cost-effective counter electrode (CE) in dye-sensitized solar cells (DSSCs). Under AM1.5G illumination, the fabricated DSSCs with HPC-based CE exhibited a high short-circuit current density (J<SUB>SC</SUB>) of 13.51 mA/cm<SUP>2</SUP> and an excellent power conversion efficiency (PCE) of 4.98%, which is attributed to the high specific surface area and hierarchical porous property of the HPC sample. The obtained results were improved compared to the commercially available activated carbon-based CE in DSSCs (J<SUB>SC</SUB> = 12.11 mA/cm<SUP>2</SUP> and PCE = 4.45%). This facile fabrication of highly porous activated carbon-based materials from the biomass can be utilized as a high-performance electrode material in DSSCs and energy storage device applications.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Highly porous activated carbon was prepared from pine cone flowers as a biomass source. </LI> <LI> The as-prepared sample was coated on FTO glass for counter electrode in DSSCs. </LI> <LI> The Pt-free counter electrode in DSSCs exhibited excellent solar energy conversion properties. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Designed construction of yolk–shell structured trimanganese tetraoxide nanospheres via polar solvent-assisted etching and biomass-derived activated porous carbon materials for high-performance asymmetric supercapacitors

        Nagaraju, Goli,Sekhar, S. Chandra,Rama Raju, G. Seeta,Bharat, L. Krishna,Yu, Jae Su The Royal Society of Chemistry 2017 Journal of Materials Chemistry A Vol.5 No.30

        <▼1><P>Yolk–shell structured Mn3O4 nanospheres and biomass-derived activated carbon materials were prepared for use in high energy storage asymmetric supercapacitors.</P></▼1><▼2><P>Recently, yolk–shell structured electrode materials have attracted increasing interest in supercapacitors (SCs) due to their high surface area, good electrochemical activity and excellent mechanical stability towards superior energy storage performance. However, the synthesis strategies to prepare such yolk–shell structured materials without using chemical surfactants/solid templates are still inferior. Herein, a facile and cost-effective strategy to design yolk–shell structured trimanganese tetraoxide nanospheres (Mn3O4 NSs) with a distinctive core–void–shell configuration to use as an efficient positive electrode material in asymmetric SCs is demonstrated. Specifically, the yolk–shell structured Mn3O4 NSs were prepared by the inclusion of water droplets to the manganese precursor–isopropyl alcohol system, which facilitates the inside-out Ostwald ripening process to construct a yolk–shell-like configuration with porous properties. In aqueous electrolyte solution, the corresponding material exhibited a high specific capacitance (211.36 F g<SUP>−1</SUP> at a current density of 0.5 A g<SUP>−1</SUP>), a good rate capability (79.4% at 10 A g<SUP>−1</SUP>) and an excellent cycling stability (92% after 2000 cycles) compared to its solid counterparts. Meanwhile, a low-cost material based on biomass-derived activated carbon with a honeycomb-like structure is also prepared using waste corrugated boxes, which exhibits a reliable electrochemical performance for use as a negative electrode material. Moreover, the fabricated asymmetric SC using both electrode materials offers a maximum potential window of 2 V with higher energy density (19.47 W h kg<SUP>−1</SUP>) and power density (2263.89 W kg<SUP>−1</SUP>) values, which can effectively power up commercial light-emitting diodes for practical applications.</P></▼2>

      • SCISCIESCOPUS

        Hydrothermal synthesis of MoS<sub>2</sub> and WS<sub>2</sub> nanoparticles for high-performance supercapacitor applications

        Nagaraju, Chandu,V. V. Muralee Gopi, Chandu,Ahn, Jin-Woo,Kim, Hee-Je The Royal Society of Chemistry 2018 NEW JOURNAL OF CHEMISTRY Vol.42 No.15

        <P>Nanoparticle-featured MoS2 and WS2 have been synthesized using a facile one-step hydrothermal approach and their application as electroactive materials for high-performance supercapacitors has been investigated. The electrochemical results of the MoS2 electrode exhibit a higher specific capacitance (<I>C</I>s) of 1531.2 F g<SUP>−1</SUP> at 5 mA cm<SUP>−2</SUP> with good cycling stability (up to 81.6% retention over 3000 cycles). The WS2 electrode delivers a high <I>C</I>s of 1439.5 F g<SUP>−1</SUP> at 5 mA cm<SUP>−2</SUP> and excellent cycling stability with 77.4% retention after 3000 cycles. The outstanding performance of the MoS2 and WS2 electrodes indicates their potential in next-generation high-performance supercapacitor applications.</P>

      • SCISCIESCOPUS

        Facile synthesis of ZnO/CuO nanostructures on cellulose paper and their p-n junction properties

        Nagaraju, G.,Hwan Ko, Y.,Su Yu, J. North-Holland 2014 Materials letters Vol.116 No.-

        A cellulose paper based p-n junction device was fabricated by synthesizing the ZnO/CuO nanostructures via a hydrothermal process. The CuO nanospindles (NSs) were decorated on the surface of cellulose paper substrate by a simple soaking process. Subsequently, ZnO nanorod arrays were grown on the surface of the CuO NSs decorated cellulose paper (i.e., CuO NSs/paper) by the hydrothermal process. The synthesized ZnO/CuO nanostructures on cellulose paper exhibited good crystal and optical properties and favorably formed the p-n heterojunction with a rectifying behavior.

      • Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

        Nagaraju, Goli,Ko, Yeong Hwan,Yu, Jae Su Elsevier 2015 Journal of Power Sources Vol.283 No.-

        <P><B>Abstract</B></P> <P>Tricobalt tetroxide (Co<SUB>3</SUB>O<SUB>4</SUB>) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)<SUB>2</SUB>) NPAs were electrochemically deposited on FCFs by applying an external voltage of −1.5 V for 30 min. Then, the Co<SUB>3</SUB>O<SUB>4</SUB> NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)<SUB>2</SUB> NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co<SUB>3</SUB>O<SUB>4</SUB> NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge–discharge measurements in 1 M KOH electrolyte solution. The Co<SUB>3</SUB>O<SUB>4</SUB> NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co<SUB>3</SUB>O<SUB>4</SUB> nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Co<SUB>3</SUB>O<SUB>4</SUB> nanoplate arrays (NPAs) were fabricated on flexible conductive fabric substrate (FCFs). </LI> <LI> The Co<SUB>3</SUB>O<SUB>4</SUB> NPAs were uniformly entrapped on FCFs with good adhesion. </LI> <LI> Optimized growth of Co<SUB>3</SUB>O<SUB>4</SUB> NPAs on FCFs leads to a superior electrochemical performance in supercacpitors. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage

        Nagaraju, G.,Ko, Y. H.,Cha, S. M.,Im, S. H.,Yu, J. S. Springer Science + Business Media 2016 NANO RESEARCH Vol.9 No.5

        <P>Hierarchical core-shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical deposition method. Under an external cathodic voltage of -2.0 V for 30 min, hierarchical core-shell-like MnO2-NS-decorated MnO2 HNPAs (MnO2 NSs@MnO2 HNPAs) were uniformly grown on CC with reliable adhesion. The phase purity and morphological properties of the samples were characterized by various physicochemical techniques. At a constant external cathodic voltage, growth of MnO2 NSs@MnO2 HNPAs on CC was carried for different time periods. When utilized as a flexible, robust, and binder-free electrode for pseudocapacitors, the hierarchical core-shell-like MnO2 NSs@MnO2 HNPAs on CC showed clearly enhanced electrochemical properties in 1 M Na2SO4 electrolyte solution. The results indicate that the MnO2 NSs@MnO2 HNPAs on CC have a maximum specific capacitance of 244.54 F/g at a current density of 0.5 A/g with excellent cycling stability compared to that of bare MnO2 HNPAs on CC (112.1 F/g at 0.5 A/g current density). We believe that the superior charge storage performance of the pseudocapacitive electrode can be mainly attributed to the hierarchical MnO2 NSs@MnO2 HNPAs building blocks that have a large specific surface area, offering additional electroactive sites for efficient electrochemical reactions. The facile and single-step approach to growth of hierarchical pseudocapacitive materials on textile based electrodes opens up the possibility for the fabrication of high-performance flexible energy storage devices.</P>

      • Wearable Fabrics with Self-Branched Bimetallic Layered Double Hydroxide Coaxial Nanostructures for Hybrid Supercapacitors

        Nagaraju, Goli,Chandra Sekhar, S.,Krishna Bharat, L.,Yu, Jae Su American Chemical Society 2017 ACS NANO Vol.11 No.11

        <P>We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for <I>in situ</I> electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core–shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core–shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm<SUP>2</SUP> at a current density of 2 mA/cm<SUP>2</SUP> and excellent rate capability of 78.3% at 30 mA/cm<SUP>2</SUP> (420.5 μAh/cm<SUP>2</SUP>) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm<SUP>2</SUP> at 3 mA/cm<SUP>2</SUP>, and a high energy density of 0.392 mWh/cm<SUP>2</SUP> at a power density of 2.353 mW/cm<SUP>2</SUP>. Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2017/ancac3.2017.11.issue-11/acsnano.7b04368/production/images/medium/nn-2017-043688_0009.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/nn7b04368'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼