RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modelling and Simulation of Cell Growth Dynamics, Substrate Consumption, and Lactic Acid Production Kinetics of Lactococcus lactis

        Myrto-Panagiota Zacharof,Robert W. Lovitt 한국생물공학회 2013 Biotechnology and Bioprocess Engineering Vol.18 No.1

        Lactococcus lactis species have been and still are extensively investigated due to their significant commercial importance. Current scientific research focuses on strains utilized in food industry, due to their multiple uses in food and beverages fabrication. Biomass of Lactococcus lactis is of great interest as well as the end products of its metabolism such as lactic acid and nisin. However their production is constantly challenged due to end product inhibition occurring during intensive propagation of the coccus in reactor systems. To successfully predict the behavior of the culture, the approach of combining mathematics with biology, ergo the development of an unstructured mathematical model, was taken. Although Luedeking and Piret is the model that has been extensively used to demonstrate growth in end-product inhibition cultures, its applicability is limited due to its dependance on the specific growth and product coefficients, particularly related to the culturing conditions used. To overcome these hurdles, a combination of the non competitive single product end inhibition Taylor and Hinselwood models was used, with the significance of this model laying in the fact that it offers a feasible alternative to the commonly used model of Luedeking and Piret for describing fermentation kinetics governed by end-product inhibitions. The fitting with the experimental values, in batch mode, was tested in terms of the coefficient of determination (R²), having values 0.97 ~ 0.99 and suggesting a very good fitting with the experimental data. The model was further developed to achieve theoretical predictions of volumetric cell productivity in continuous and fed-batch mode of substrate feed in different culturring systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼