RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In situ dynamic investigation on the historic “İskenderpaşa” masonry mosque with non-destructive testing

        Murat Gunaydin 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.1

        Turkey is a transcontinental country located partly in Asia and partly in Europe, and hosted by diverse civilizations including Hittite, Urartu, Lydia, Phrygia, Pontius, Byzantine, Seljuk's and Ottomans. At various times, these built many historic monuments representing the most significant characteristics of their civilizations. Today, these monuments contribute enormously to the esthetic beauty of environment and important to many cities of Turkey in attracting tourism. The survival of these monuments depends on the investigation of structural behavior and implementation of needed repairing and/or strengthening applications. Hence, many countries have made deeper investigations and regulations to assess their monuments' structural behavior. This paper presents the dynamic behavior investigation of a monumental masonry mosque, the "İskenderpaşa Mosque" in Trabzon (Turkey), by performing an experimental examination with non-destructive testing. The dynamic behavior investigation was carried out by determining the dynamic characteristic called as natural frequencies, mode shapes and damping ratios. The experimental dynamic characteristics were extracted by Operational Modal Analysis (OMA). In addition, Finite Element (FE) model of masonry mosque was constructed in ANSYS software and the numerical dynamic characteristics such as natural frequencies and mode shapes were also obtained and compared to experimental ones. The paper aims at presenting the non-destructive testing procedure of a masonry mosque as well as the comparison of experimental and numerical dynamic characteristics obtained from the mosque.

      • SCIESCOPUS

        Construction stage analysis of fatih sultan mehmet suspension bridge

        Gunaydin, Murat,Adanur, Suleyman,Altunisik, Ahmet Can,Sevim, Baris Techno-Press 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.42 No.4

        In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

      • Effects of the vertical component of ground motion on the seismic performance of Bhakra Gravity Dam

        Sevim, Baris,Altunisik, Ahmet Can,Gunaydin, Murat Techno-Press 2021 Advances in concrete construction Vol.12 No.3

        In this paper, the earthquake component effects on the seismic performance of Bhakra Gravity Dam in India are investigated. For the purpose, Bhakra Dam is modeled two-dimensionally considering dam-reservoir-foundation interaction. In the finite element modeling, dam and foundation are represented by PLANE182 elements in ANSYS with different material properties, and fluid is considered with FLUID29 elements. This type of element provides translation and pressure degrees of freedom. Linear time history analyses on the dam are performed by considering components of the 1991 Uttarkashi and 1999 Chamoli (NW Himalaya) Earthquakes in India. During the analyses firstly the horizontal component of earthquakes are applied to system and results are obtained, and then both of horizontal and vertical components are applied to the systems together. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Also, Rayleigh damping is considered. The seismic performance of Bhakra Dam is examined and presented by dynamic characteristics, displacements, principal stresses, and demand-capacity ratios. The results showed that the vertical components of the earthquake significantly affect the response of the dam. The results show that the vertical component with the horizontal component cause biggest tensile stresses compared to only the horizontal component for both earthquakes. However, displacement response is changed depending on the ground motion. As a conclusion of this study it can be said that the vertical component changes the structural response of the dam on both of the good and bad behaviors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼