RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Analysis of 3D Building Construction Applications in Augmented Reality

        Khan, Humera Mehfooz,Waseemullah, Waseemullah,Bhutto, Muhammad Aslam,Khan, Shariq Mahmood,Baig, Mirza Adnan International Journal of Computer ScienceNetwork S 2022 International journal of computer science and netw Vol.22 No.10

        Construction industry is considered as one of the oldest industries in the world since human came into being and the need of their own space is realized. All this led to make the world a space of many beautiful constructive ventures. As per the requirements of today's world, every industry is recognizing the need for use and adoption of modern as well as innovative technologies due to their benefits and timely production. Now construction industry has also started adopting the use of modern and innovative technologies during their projects but still the rate of adoption is so slow. From design to completion, construction projects take a lot to manage for which technology based solutions have continuously been proposed. These include Computer Aided Design (CAD), building information modeling (BIM) and cloud computing have been proved to be much successful until now. The construction projects are high budgeted, and direly require timely and successful completion with quality, resource and other constraints. So, the researchers observe the need of more clear and technology based communication between the construction projects and its constructors and other stakeholders is required before and during the construction to take timely precautions for expected issues. This study has analyzed the use of Augmented Reality (AR) technology adopting GammaAR, and ARki applications in construction industry. It has been found that both applications are light-weighted, upgradable, provide offline availability and collaborative environment as well as fulfil most of the requirements of the construction industry except the cost. These applications also support different screen size for better visualization and deep understanding. Both applications are analyzed, based on construction's application requirements, usability of AR and ratings of applications user collected from application's platform. The purpose of this research is to provide a detail insight of construction applications which are using AR to facilitate both the future developers and consumers.

      • KCI등재

        Synthesis of Ag-Loaded TiO2 Electrospun Nanofibers for Photocatalytic Decolorization of Methylene Blue

        M. Raffi,Zaira Batool,Mashkoor Ahmad,M. Zakria,Rana I. Shakoor,Muhammad Aslam Mirza,Arshad Mahmood 한국섬유공학회 2018 Fibers and polymers Vol.19 No.9

        Titanium dioxide (TiO2) is one of the excellent photocatalysts used for degradation of environmetal pollutants. In this work, 2.5, 5.0 and 7.5 wt.% of silver (Ag)-loaded TiO2 nanofibers of mean size 52-134 nm were synthesized by electrospinning method. These electrospun nanofibers were calcined at 500 oC to enable the transformation of Rutile (R) phase to Anatase (A), elimination of reaction moieties from the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading on the morphology, crystal structure, phase transformation, and band gap of these electrospun nanofibers have been characterized by scannining electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), raman spectroscopy and UV-visible spectroscopy. These nanofibers exhibited a red-shift in the absorbance edge and a significant enhancement of light absorption in the wavelength range of 250-550 nm. These electrospun nanofibers were investigated for photodecomposition of methylene blue (MB), and photocatalytic decolorization rates were determined by pseudo-first-order equation. The rate constants for the pure and those of 2.5, 5.0, and 7.5 wt% Agloaded TiO2 nanofibers were computed to be 0.1439 min-1, 0.1608 min-1, 0.1876 min-1, and 0.2251 min-1 respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼