RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams

        Mohammed Yahiaoui,Abdelouahed Tounsi,Bouazza Fahsi,Rabbab Bachir Bouiadjra,Samir Benyoucef 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.68 No.1

        This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak mathematical model. The governing equations are obtained through the Hamilton’s principle and then are solved via Navier solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models on the general behavior of FG sandwich beams on elastic foundation.

      • KCI등재

        Effect of the corrosion of plate with double cracks in bonded composite repair

        Mohamed Berrahou,Mokadem Salem,B. Mecha,B. Bachir Bouiadjra 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.64 No.3

        This paper presents a three-dimensional finite element method analysis of repairing plate with bonded composite patch subjected to tensile load. The effect of the corrosion on the damage of the adhesive (FM73) in the length of two horizontal cracks on the both sides is presented. The obtained results show that the crack on the left side creates a very extensive area of the damaged zone and gives values of the stress intensity factor (SIF) higher than that on the right side. We can conclude that the left crack is more harmful (dangerous) than that on the right side.

      • Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

        Mohammed Chatbi,Baghdad Krour,Mohamed A. Benatta,Zouaoui R. Harrat,Sofiane Amziane,Mohamed Bachir Bouiadjra 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.5

        Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt’s model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton’s principle the energy equations are obtained. Finally, based on Navier’s technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

      • SCIESCOPUS

        The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams

        Yahiaoui, Mohammed,Tounsi, Abdelouahed,Fahsi, Bouazza,Bouiadjra, Rabbab Bachir,Benyoucef, Samir Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.68 No.1

        This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak mathematical model. The governing equations are obtained through the Hamilton's principle and then are solved via Navier solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models on the general behavior of FG sandwich beams on elastic foundation.

      • KCI등재

        Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA

        Cherfi Mohamed,Benbarek Smail,Bachir Bouiadjra,B. Serier 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.57 No.4

        In orthopedic surgery and more especially in total arthroplastie of hip, the fixing of the implants generally takes place essentially by means of constituted surgical polymer cement. The damage of this materiel led to the fatal rupture and thus loosening of the prosthesis in total hip, the effect of over loading as the case of tripping of the patient during walking is one of the parameters that led to the damage of this binder. From this phenomenon we supposed that a remain of bone is included in the cement implantation. The object of this work is to study the effect of this bony inclusion in the zones where the outside conditions (loads and geometric shapes) can provoke the fracture of the cement and therefore the aseptic lousing of the prosthesis. In this study it was assumed the presence of two bones –type inclusions in this material, one after we analyzed the effect of interaction between these two inclusions damage of damage to this material. One have modeled the damage in the cement around this bone inclusion and estimate the crack length from the damaged cement zone in the acetabulum using the finite element method, for every position of the implant under the extreme effort undergone by the prosthesis. We noted that the most intense stress position is around the sharp corner of the bone fragment and the higher level of damage leads directly the fracture of the total prosthesis of the hip.

      • A quasi 3D solution for thermodynamic response of FG sandwich plates lying on variable elastic foundation with arbitrary boundary conditions

        Rabbab Bachir Bouiadjra,Abdelkader Mahmoudi,Mohamed Sekkal,Samir Benyoucef,Mahmoud M. Selim,Abdelouahed Tounsi,Muzamal Hussain 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.41 No.6

        In this paper, an analytical solution for thermodynamic response of functionally graded (FG) sandwich plates resting on variable elastic foundation is performed by using a quasi 3D shear deformation plate theory. The displacement field used in the present study contains undetermined integral terms and involves only four unknown functions with including stretching effect. The FG sandwich plate is considered to be subject to a time harmonic sinusoidal temperature field across its thickness with any combined boundary conditions. Equations of motion are derived from Hamilton’s principle. The numerical results are compared with the existing results of quasi-3D shear deformation theories and an excellent agreement is observed. Several numerical examples for fundamental frequency, deflection, stress and variable elastic foundation parameter’s analysis of FG sandwich plates are presented and discussed considering different material gradients, layer thickness ratios, thickness-to-length ratios and boundary conditions. The results of the present study reveal that the nature of the elastic foundation, the boundary conditions and the thermodynamic loading affect the response of the FG plate especially in the case of a thick plate.

      • KCI등재

        Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

        Berrahou Mohamed,B. Bachir Bouiadjra 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.59 No.1

        Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

      • KCI등재

        Numerical simulation of the femur fracture under static loading

        Zagane Mohammed El Sallah,Benbarek Smail,Sahli Abderahmane,B. Bachir Bouiadjra,Serier Boualem 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.60 No.3

        Bone is a living material with a complex hierarchical structure that gives it remarkable mechanical properties. Bone constantly undergoes mechanical. Its quality and resistance to fracture is constantly changing over time through the process of bone remodeling. Numerical modeling allows the study of the bone mechanical behavior and the prediction of different trauma caused by accidents without expose humans to real tests. The aim of this work is the modeling of the femur fracture under static solicitation to create a numerical model to simulate this element fracture. This modeling will contribute to improve the design of the indoor environment to be better safe for the passengers’ transportation means. Results show that vertical loading leads to the femur neck fracture and horizontal loading leads to the fracture of the femur diaphysis. The isotropic consideration of the bone leads to bone fracture by crack propagation but the orthotropic consideration leads to the fragmentation of the bone.

      • SCIESCOPUS

        Hygro-thermo-mechanical bending analysis of FGM plates using a new HSDT

        Boukhelf, Fouad,Bouiadjra, Mohamed Bachir,Bouremana, Mohammed,Tounsi, Abdelouahed Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.21 No.1

        In this paper, a novel higher-order shear deformation theory (HSDT) is proposed for the analysis of the hygro-thermo-mechanical behavior of functionally graded (FG) plates resting on elastic foundations. The developed model uses a novel kinematic by considering undetermined integral terms and only four variables are used in this model. The governing equations are deduced based on the principle of virtual work and the number of unknown functions involved is reduced to only four, which is less than the first shear deformation theory (FSDT) and others HSDTs. The Navier-type exact solutions for static analysis of simply supported FG plates subjected to hygro-thermo-mechanical loads are presented. The accuracy and efficiency of the present model is validated by comparing it with various available solutions in the literature. The influences of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratios and elastic coefficients parameters on deflections and stresses of FG plates are also investigated.

      • KCI등재

        A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

        Hafid Khetir,Mohamed Bachir Bouiadjra,Mohammed Sid Ahmed Houari,Abdelouahed Tounsi,S. R. Mahmoud 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.64 No.4

        In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼