RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Transcriptome analysis of metabolisms related to fruit cracking during ripening of a cracking‑susceptible grape berry cv. Xiangfei (Vitis vinifera L.)

        Mingtao Zhu,Jun Yu,Min Zhao,Meijun Wang,Guoshun Yang 한국유전학회 2020 Genes & Genomics Vol.42 No.6

        Background Grape is an economically valuable fruit around the world. However, some cultivars are prone to fruit cracking during ripening, leading to severe losses. Objective We aimed to find important metabolisms related to fruit cracking during ripening process. Methods RNA-Sequence and analysis was applied to the pericarp of cracking-susceptible ‘Xiang Fei’ at 1 (W1), 2 (W2) and 3 weeks (W3) after veraison on Illumina HiSeq xten; Results Compared with W1, the berry cracking rate increased significantly in W2 and W3. Through transcriptomic analysis, a total of 22,609 genes were expressed in the grape pericarp, among which 805 and 2758 genes were significantly differentially regulated in W1-vs.-W2 and W1-vs.-W3 comparison, respectively. Besides, 304 and 354 genes were up- and down-regulated in both comparisons. The significantly enriched GO terms of both W1–W2 and W1–W3 are related to cell wall and wax biosynthesis. And lipid metabolism, which are involved in the top 20 enriched KEGG pathways of both comparisons, was related to wax biosynthesis. Further, GO enrichment analysis of differentially expressed genes (DEGs) with same regulatory changes also indicated that the continuously up-regulated DEGs are significantly enriched in cell wall component biosynthesis and hydrolase. Conclusion These findings suggested that genes related to cell wall metabolism and cuticle biosynthesis may play important roles in regulating grape berry cracking. Our results provide a reference for further studies on the molecular mechanism underlying fruit cracking.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼