RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Identification of QTLs for Drought-Related Traits in Alien Introgression Lines Derived from Crosses of Rice (Oryza sativa cv. IR64) × O. glaberrima under Lowland Moisture Stress

        Isaac Kofi Bimpong,Rachid Serraj,진중현,Joie Ramos,Evelyn M. T. Mendoza,Jose E. Hernandez,Merlyn S. Mendioro,Darshan S. Brar 한국식물학회 2011 Journal of Plant Biology Vol.54 No.4

        Drought is a major abiotic stress that limits rice productivity in rain-fed and upland ecosystems. African rice, Oryza glaberrima, has low yields but is tolerant to drought and other stresses. We evaluated 513 BC2F3progenies from alien introgression lines (AILs) that were derived from crosses of Oryza sativa (IR64) × O. glaberrima. They were assessed for yield and other traits when grown under drought at two locations. Such conditions reduced grain production by 59% compared with the recurrent parent (IR64). However, 33 AILs had higher yields, thus demonstrating their potential as genetic material for transferring drought-related traits from O. glaberrima to O. sativa. A set of 200 AILs was selectively genotyped with 173 simple sequence repeat and sequenced tagged site markers. Molecular analysis showed that a mean of 4.5% of the O. glaberrima genome was introgressed in BC2F3 AILs. Our analysis revealed 33 quantitative trait loci (QTLs;including 10 novel) for different traits. O. glaberrima contributed 50% of the alleles to those newly identified QTLs, with one for grain yield per plant (ypp9.1) being new. A QTL at RM208 on chromosome 2 positively affected yield under stress, accounting for 22% of the genetic variation. Our identification of drought-related QTLs for yield and yield components will be useful to future research efforts in marker-assisted selection.

      • KCI등재

        Development of Improved Ciherang-Sub1 Having Tolerance to Anaerobic Germination Conditions

        ( Anna Mariel U. Toledo ),( John Carlos I. Ignacio ),( Carlos Casal Jr ),( Zennia Jean Gonzaga ),( Merlyn S. Mendioro ),( Endang M. Septiningsih ) 한국육종학회 2015 Plant Breeding and Biotechnology Vol.3 No.2

        The increased severity and frequency of flooding is causing greater yield reductions in most rice-growing areas. To address this, popular cultivars were improved through introgression of SUB1, an FR13A-derived QTL conferring submergence tolerance at the vegetative stage, using marker-assisted backcrossing (MABC). Ciherang-Sub1, one of these improved near isogenic lines (NILs), showed significantly higher tolerance compared to the original cultivar while retaining its desirable agronomic qualities. However, due to the current shift to direct seeding, seed germination may also be adversely affected by flooding; thus the addition of major QTLs which can confer anaerobic germination (AG) tolerance will be highly beneficial. The AG tolerance QTL, qAG-9-2, also referred to as AG1, derived from Khao Hlan On, a Myanmar landrace, has been introgressed into the elite cultivar IR64 to produce IR64-AG1. This research focused on the transfer of AG1 to Ciherang-Sub1 via MABC, using IR64-AG1, a closely-related donor. Introgression of AG1 and recovery of the Ciherang genome was done in two backcross generations followed by one generation of selfing. The use of a closely-related donor shortened the development period to two years which could have been further reduced if a larger BC1F1 population had been used. Phenotypic evaluation showed that introgression of AG1 significantly increased AG tolerance compared to Ciherang-Sub1, and that the newly developed Ciherang-Sub1+AG1 retained the submergence tolerance from SUB1. The approach is very promising for faster development of improved lines using closely-related cultivars or improved lines as donors for introducing key traits.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼