RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Influence of exterior joint effect on the inter-story pounding interaction of structures

        Favvata, Maria J.,Karayannis, Chris G.,Liolios, Asterios A. Techno-Press 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.33 No.2

        The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

      • SCIESCOPUS

        Limit states of RC structures with first floor irregularities

        Favvata, Maria J.,Naoum, Maria C.,Karayannis, Chris G. Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.47 No.6

        The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

      • KCI등재

        Limit states of RC structures with first floor irregularities

        Maria J. Favvata,Maria C. Naoum,Chris G. Karayannis 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.47 No.6

        The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams softstory mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

      • KCI등재

        Influence of exterior joint effect on the inter-story pounding interaction of structures

        Maria J. Favvata,Chris G. Karayannis,Asterios A. Liolios 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.33 No.2

        The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

      • KCI등재

        Inter-story pounding between multistory reinforced concrete structures

        Chris G. Karayannis,Maria J. Favvata 국제구조공학회 2005 Structural Engineering and Mechanics, An Int'l Jou Vol.20 No.5

        The influence of the inter-story structural pounding on the seismic behaviour of adjacentmultistory reinforced concrete structures with unequal total heights and different story heights isinvestigated. Although inter-story pounding is a common case in practice, it has not been studied beforein the literature as far as the authors are aware. Fifty two pounding cases, each one for two diferentthe inter-story pounding is the local effect on the external column of the tall building that sufers theimpact from the upper floor slab of the adjacent shorter structure. (ii) The ductility demands for thiscolumn are increased comparing with the ones without the pounding effect. In the cases that the twobuildings are in contact these demands appear to be critical since they are higher than the availabledemands of this column are also higher than the ones of the same column without the pounding effect butthey appear to be lower than the available ductility values. (i) It has to be stresed that in all theexamined cases the developed shear forces of this column exceeded the shear strength. Thus, it can beconcluded that in inter-story pounding cases the column that suffers the impact is always in a criticalbegining this column appears to be critical due to high ductility demands as well. The consequences ofthe impact can be very severe for the integrity of the column and may be a primary cause for theinitiation of the collapse of the structure. This means that special measures have to be taken in the designprocess first for the critically increased shear demands and secondly for the high ductility demands.

      • SCIESCOPUS

        Inter-story pounding between multistory reinforced concrete structures

        Karayannis, Chris G.,Favvata, Maria J. Techno-Press 2005 Structural Engineering and Mechanics, An Int'l Jou Vol.20 No.5

        The influence of the inter-story structural pounding on the seismic behaviour of adjacent multistory reinforced concrete structures with unequal total heights and different story heights is investigated. Although inter-story pounding is a common case in practice, it has not been studied before in the literature as far as the authors are aware. Fifty two pounding cases, each one for two different seismic excitations, are examined. From the results it can be deduced that: (i) The most important issue in the inter-story pounding is the local effect on the external column of the tall building that suffers the impact from the upper floor slab of the adjacent shorter structure. (ii) The ductility demands for this column are increased comparing with the ones without the pounding effect. In the cases that the two buildings are in contact these demands appear to be critical since they are higher than the available ductility values. In the cases that there is a small distance between the interacting buildings the ductility demands of this column are also higher than the ones of the same column without the pounding effect but they appear to be lower than the available ductility values. (iii) It has to be stressed that in all the examined cases the developed shear forces of this column exceeded the shear strength. Thus, it can be concluded that in inter-story pounding cases the column that suffers the impact is always in a critical condition due to shear action and, furthermore, in the cases that the two structures are in contact from the beginning this column appears to be critical due to high ductility demands as well. The consequences of the impact can be very severe for the integrity of the column and may be a primary cause for the initiation of the collapse of the structure. This means that special measures have to be taken in the design process first for the critically increased shear demands and secondly for the high ductility demands.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼